Solveeit Logo

Question

Question: The area of the triangle formed by the lines \(4x^{2} - 9xy - 9y^{2} = 0\)and \(x = 2\)is...

The area of the triangle formed by the lines 4x29xy9y2=04x^{2} - 9xy - 9y^{2} = 0and x=2x = 2is

A

2

B

3

C

103\frac{10}{3}

D

203\frac{20}{3}

Answer

103\frac{10}{3}

Explanation

Solution

The area of triangle formed by the lines ax2+2hxy+by2=0ax^{2} + 2hxy + by^{2} = 0 and lx+my+n=0lx + my + n = 0is given by n2h2abam22hlm+bl2\left| \frac{n^{2}\sqrt{h^{2} - ab}}{am^{2} - 2hlm + bl^{2}} \right|

Here a=4,b=9,h=92,l=1,m=0,n=2a = 4,b = - 9,h = - \frac{9}{2},l = 1,m = 0,n = - 2,

then area of triangle

=(2)2(92)24×929×(1)2\left| \frac{( - 2)^{2}\sqrt{\left( \frac{- 9}{2} \right)^{2} - 4 \times \frac{- 9}{2}}}{- 9 \times (1)^{2}} \right|=4814+3629=309=103\left| \frac{4\sqrt{\frac{81}{4} + \frac{36}{2}}}{- 9} \right| = \left| \frac{- 30}{9} \right| = \frac{10}{3}