Solveeit Logo

Question

Question: The area of the smaller region in which the curve y =<img src="https://cdn.pureessence.tech/canvas_...

The area of the smaller region in which the curve

y =where [.] denotes the greatest integer function, divides the circle (x - 2)2 + (y + 1)2 = 4, is equal to

A

2π333\frac { 2 \pi - 3 \sqrt { 3 } } { 3 }sq. units

B

33π3\frac { 3 \sqrt { 3 } - \pi } { 3 } sq. units

C

4π333\frac { 4 \pi - 3 \sqrt { 3 } } { 3 }sq. units

D

5π333\frac { 5 \pi - 3 \sqrt { 3 } } { 3 } sq. units

Answer

4π333\frac { 4 \pi - 3 \sqrt { 3 } } { 3 }sq. units

Explanation

Solution

Circle has (2, -1) as it's center and radius of this circle is 2. Thus, if P(x, y) be any point on it then x e [0, 4].

Let g(x) =x3100+x50\frac { x ^ { 3 } } { 100 } + \frac { x } { 50 }

⇒ g'(x)= 3x3100+150\frac { 3 x ^ { 3 } } { 100 } + \frac { 1 } { 50 } > 0 ∀ x ∈ (0, 4]

Thus g(x) is increasing in [0, 4]. g(0) = 0, g(4) = 1825\frac { 18 } { 25 } .

Hence g(x) ∈ [0,1825]\left[ 0 , \frac { 18 } { 25 } \right] ∀ x ∈ [0, 4]

⇒ [g(x)] = 0 ∀ x ∈ [0, 4]

Thus y = [x3100+x50]\left[ \frac { x ^ { 3 } } { 100 } + \frac { x } { 50 } \right], simply represents the x-axis.

CA = CB = 2, CD = 1

⇒ cos θ = ⇒ ∠ACB =

ΔACB=1222sin2π3=3\Delta _ { \mathrm { ACB } } = \frac { 1 } { 2 } \cdot 2 ^ { 2 } \cdot \sin \frac { 2 \pi } { 3 } = \sqrt { 3 } sq. units.

Area of sector ACB = 12222π3=4π3\frac { 1 } { 2 } \cdot 2 ^ { 2 } \cdot \frac { 2 \pi } { 3 } = \frac { 4 \pi } { 3 } sq. units

Thus area of smaller segment

=(4π33)=(4π333)= \left( \frac { 4 \pi } { 3 } - \sqrt { 3 } \right) = \left( \frac { 4 \pi - 3 \sqrt { 3 } } { 3 } \right) sq. units.