Solveeit Logo

Question

Mathematics Question on integral

The area of the region \left\\{ (x, y) : y^2 \leq 4x, \, x<4, \, \frac{xy(x - 1)(x - 2)}{(x - 3)(x - 4)}>0, \, x \neq 3 \right\\}is

A

163\frac{16}{3}

B

643\frac{64}{3}

C

83\frac{8}{3}

D

323\frac{32}{3}

Answer

323\frac{32}{3}

Explanation

Solution

y24x,x<4y^2 \leq 4x, \quad x < 4

xy(x1)(x2)(x3)(x4)>0\frac{xy(x-1)(x-2)}{(x-3)(x-4)} > 0

Case - I: y>0y > 0

x(x1)(x2)(x3)(x4)>0,x(0,1)(2,3)\frac{x(x-1)(x-2)}{(x-3)(x-4)} > 0, \quad x \in (0,1) \cup (2,3)

Case - II: y<0y < 0

x(x1)(x2)(x3)(x4)<0,x(1,2)(3,4)\frac{x(x-1)(x-2)}{(x-3)(x-4)} < 0, \quad x \in (1,2) \cup (3,4)
Parabola in x direction

Area:

Area=204xdx\text{Area} = 2 \int_{0}^{4} \sqrt{x} \, dx

=223[x3/2]04=323= 2 \cdot \frac{2}{3} \left[ x^{3/2} \right]_{0}^{4} = \frac{32}{3}