Solveeit Logo

Question

Mathematics Question on Parabola

The area of the region in the first quadrant which is above the parabola y=x2y = x^2 and enclosed by the circle x2+y2=2x^2 +y^2 = 2 and the y-axis is

A

16+π4\dfrac{1}{6}+\dfrac{π}{4}

B

112+π4\dfrac{1}{12}+\dfrac{π}{4}

C

16+π4\dfrac{-1}{6}+\dfrac{\pi}{4}

D

16π4\dfrac{-1}{6}-\dfrac{π}{4}

E

π22+4\dfrac{-π^2}{2} +4

Answer

16+π4\dfrac{1}{6}+\dfrac{π}{4}

Explanation

Solution

Given that

y=x2y = x^2 and x2+y2=2x^2 + y^2 = 2

x2+y2=2⇒ x^2 + y^2 = 2

y+y2=2⇒y + y^2 = 2

(y+2)(y1)=0⇒(y + 2)(y − 1) = 0

(y+2)(y1)=0\therefore (y + 2)(y − 1) = 0

y=2,1\therefore y = −2, 1

Then the area,

A=01ydy+12(2y2)dyA = ∫_0^1 √ ydy + ∫_1^{√2}( 2 - y^2)dy

=23[y3/2]01+[ty2(2y2)+sin1(y2]12= \dfrac{2}{3} [y^{3/2} ]_0^1 + [\dfrac{ty}{2} √( 2 - y^2) + sin−1(\dfrac{ y}{ √ 2}]_1^{√ 2 }

=23+0+π2(12+π4)= \dfrac{2}{3} + 0 + \dfrac{\pi}{2}-(\dfrac{1}{2}+\dfrac{\pi }{4} )

=π4+16= \dfrac{\pi}{4}+\dfrac{1}{6}(_Ans.)