Solveeit Logo

Question

Mathematics Question on Area under Simple Curves

The area of the region in the first quadrant inside the circle x2+y2=8x^2 + y^2 = 8 and outside the parabola y2=2xy^2 = 2x is equal to:

A

π213\frac{\pi}{2} - \frac{1}{3}

B

π23\pi - \frac{2}{3}

C

π223\frac{\pi}{2} - \frac{2}{3}

D

π13\pi - \frac{1}{3}

Answer

π23\pi - \frac{2}{3}

Explanation

Solution

We are required to find the area in the first quadrant inside the circle:

x2+y2=8x^2 + y^2 = 8

and outside the parabola:

y2=2xy^2 = 2x

The points of intersection between the circle and the parabola can be found by substituting x=y22x = \frac{y^2}{2} into the circle's equation:

(y22)2+y2=8\left( \frac{y^2}{2} \right)^2 + y^2 = 8

y44+y2=8\frac{y^4}{4} + y^2 = 8

Multiplying the entire equation by 4:

y4+4y2=32y^4 + 4y^2 = 32

Rearranging terms:

y4+4y232=0y^4 + 4y^2 - 32 = 0

Let z=y2z = y^2. Then:

z2+4z32=0z^2 + 4z - 32 = 0

Solving this quadratic equation using the quadratic formula:

z=4±16+1282z = \frac{-4 \pm \sqrt{16 + 128}}{2}

z=4±1442z = \frac{-4 \pm \sqrt{144}}{2}

z=4±122z = \frac{-4 \pm 12}{2}

This gives:

z = 4 \quad \text{or} \quad z = -8 \quad \text{(discarded as \( z \geq 0)} )

Thus:

y2=4    y=2ory=2y^2 = 4 \implies y = 2 \quad \text{or} \quad y = -2

In the first quadrant, we consider y=2y = 2 and x=y22=2x = \frac{y^2}{2} = 2. The required area is given by the difference between the area under the circle from x=0x = 0 to x=2x = 2 and the area under the parabola from x=0x = 0 to x=2x = 2:

Required Area=028x2dx022xdx\text{Required Area} = \int_0^2 \sqrt{8 - x^2} \, dx - \int_0^2 \sqrt{2x} \, dx

Area under the circle:

028x2dx\int_0^2 \sqrt{8 - x^2} \, dx

We use the substitution x=8sinθx = \sqrt{8} \sin \theta, dx=8cosθdθdx = \sqrt{8} \cos \theta d\theta, with limits changing from x=0x = 0 to x=2x = 2, giving θ=0\theta = 0 to θ=π4\theta = \frac{\pi}{4}. The integral becomes:

0π48cosθ8cosθdθ=80π4cos2θdθ=40π4(1+cos2θ)dθ\int_0^{\frac{\pi}{4}} \sqrt{8} \cos \theta \cdot \sqrt{8} \cos \theta d\theta = 8 \int_0^{\frac{\pi}{4}} \cos^2 \theta d\theta = 4 \int_0^{\frac{\pi}{4}} (1 + \cos 2\theta) d\theta

Evaluating:

4[θ2+sin2θ4]0π4=4[π8+0]=π24 \left[ \frac{\theta}{2} + \frac{\sin 2\theta}{4} \right]_0^{\frac{\pi}{4}} = 4 \left[ \frac{\pi}{8} + 0 \right] = \frac{\pi}{2}

Area under the parabola:

022xdx\int_0^2 \sqrt{2x} \, dx

Let u=2xu = 2x, du=2dxdu = 2dx:

022xdx=04udu2=1204u1/2du\int_0^2 \sqrt{2x} \, dx = \int_0^4 \sqrt{u} \frac{du}{2} = \frac{1}{2} \int_0^4 u^{1/2} du

Evaluating:

12[23u3/2]04=13[43/2]=83\frac{1}{2} \left[ \frac{2}{3} u^{3/2} \right]_0^4 = \frac{1}{3} \left[ 4^{3/2} \right] = \frac{8}{3}

Required Area:

Area=π283=π23\text{Area} = \frac{\pi}{2} - \frac{8}{3} = \pi - \frac{2}{3}

Therefore:

π23\boxed{\pi - \frac{2}{3}}