Solveeit Logo

Question

Mathematics Question on Area between Two Curves

The area of the region given by A={(x,y); x2x^2≤y≤min{x+2,4−3x}} is

A

318\frac{31}{8}

B

176\frac{17}{6}

C

196\frac{19}{6}

D

278\frac{27}{8}

Answer

176\frac{17}{6}

Explanation

Solution

A = {(x , y) : x 2 ≤ _y _≤ min {x + 2, 4 – 3 x}
So, the area of the required region
A=112\int_{-1}^{\frac{1}{2}}(x+2−x2)dx+112\int_{1}^{\frac{1}{2}}(4−3x−x2)dx
=[x22+2xx33\frac{x^2}{2}+2x-\frac{x^3}{3}]12^{\frac{1}{2}}-1+[4x−3x22\frac{3x^2}{2}x33\frac{x^3}{3}]12^{\frac{1}{2}}1
=(18\frac{1}{8}+1−124\frac{1}{24})−(12\frac{1}{2}−2+13\frac{1}{3})+(4−32\frac{3}{2}13\frac{1}{3})−(2−38\frac{3}{8}124\frac{1}{24})=176\frac{17}{6}