Solveeit Logo

Question

Mathematics Question on Calculus

The area of the region enclosed by the parabolas y=x25xy = x^2 - 5x and y=7xx2y = 7x - x^2 is _________.

Answer

Solution Fig

Given curves:

y=x25xandy=7xx2y = x^2 - 5x \quad \text{and} \quad y = 7x - x^2

Let

f(x)=x25xandg(x)=7xx2f(x) = x^2 - 5x \quad \text{and} \quad g(x) = 7x - x^2

To find the area enclosed between these curves, we calculate:

06(g(x)f(x))dx=06((7xx2)(x25x))dx\int_0^6 (g(x) - f(x)) \, dx = \int_0^6 ((7x - x^2) - (x^2 - 5x)) \, dx

Simplify the integrand:

=06(12x2x2)dx= \int_0^6 (12x - 2x^2) \, dx

Now, integrate term by term:

=[12x222x33]06= \left[ \frac{12x^2}{2} - \frac{2x^3}{3} \right]_0^6

Substitute the limits:

=(662)23(6)3= (6 \cdot 6^2) - \frac{2}{3} \cdot (6)^3

=216144=72unit2= 216 - 144 = 72 \, \text{unit}^2