Solveeit Logo

Question

Mathematics Question on Parabola

The area of the region enclosed by the parabola (y2)2=x1(y - 2)^2 = x - 1, the line x2y+4=0x - 2y + 4 = 0 and the positive coordinate axes is ______.

Answer

Rearrange the equations: The parabola:

(y2)2=x1    y2=x1.(y - 2)^2 = x - 1 \implies y - 2 = \sqrt{x - 1}.

- The line:

x2y+4=0    y=x+42.x - 2y + 4 = 0 \implies y = \frac{x + 4}{2}.

Find points of intersection: Set the equations equal:

x+42=x1+2.\frac{x + 4}{2} = \sqrt{x - 1} + 2.

Rearranging and squaring gives:

(x2)2=0    x=2.(x - 2)^2 = 0 \implies x = 2.

Find corresponding yy: Substitute x=2x = 2:

y=2+42=3.y = \frac{2 + 4}{2} = 3.

Identify area: Compute:

A=12(x+42(2+x1))dx.A = \int_{1}^{2} \left( \frac{x + 4}{2} - (2 + \sqrt{x - 1}) \right) dx.

Evaluate the integral:

A=12(x+422x1)dx.A = \int_{1}^{2} \left( \frac{x + 4}{2} - 2 - \sqrt{x - 1} \right) dx.

Combine results:

A=[22+8×242(2)23(21)3/2][12+8×142(1)23(11)3/2].A = \left[ \frac{2^2 + 8 \times 2}{4} - 2(2) - \frac{2}{3}(2 - 1)^{3/2} \right] - \left[ \frac{1^2 + 8 \times 1}{4} - 2(1) - \frac{2}{3}(1 - 1)^{3/2} \right].

= 9 - 18 + 15 - 1 = 5

After evaluation, we find: 5