Question
Mathematics Question on Parabola
The area of the region enclosed by the parabola (y−2)2=x−1, the line x−2y+4=0 and the positive coordinate axes is ______.
Answer
Rearrange the equations: The parabola:
(y−2)2=x−1⟹y−2=x−1.
- The line:
x−2y+4=0⟹y=2x+4.
Find points of intersection: Set the equations equal:
2x+4=x−1+2.
Rearranging and squaring gives:
(x−2)2=0⟹x=2.
Find corresponding y: Substitute x=2:
y=22+4=3.
Identify area: Compute:
A=∫12(2x+4−(2+x−1))dx.
Evaluate the integral:
A=∫12(2x+4−2−x−1)dx.
Combine results:
A=[422+8×2−2(2)−32(2−1)3/2]−[412+8×1−2(1)−32(1−1)3/2].
= 9 - 18 + 15 - 1 = 5
After evaluation, we find: 5