Solveeit Logo

Question

Mathematics Question on applications of integrals

The area of the region enclosed between parabola y2=xy^2 = x and the line y=mxy = mx is 148.\frac{1}{48}.

A

-2

B

-1

C

1

D

2

Answer

2

Explanation

Solution

Equation of parabola is y2=xy^{2}=x and line y=mxy=m x For intersection point of both curves put x=y2x=y^{2}, we get
y=my2y =m y^{2}
y(my1)=0\Rightarrow y(m y-1)=0
y=0 or y=1m\Rightarrow y=0 \text { or } y=\frac{1}{m}
Then, x=0x=0 or x=1m2x=\frac{1}{m^{2}}
\therefore Intersection points are (0,0)(0,0) and P(1m2,1m)P\left(\frac{1}{m^{2}}, \frac{1}{m}\right)

\therefore Required area =\int_\limits{0}^{1 / m}\left|\left(\frac{y}{m}-y^{2}\right)\right| d y=\left|\left[\frac{y^{2}}{2 m}-\frac{y^{3}}{3}\right]_{0}^{1 / m}\right|
=12m313m3=16m3=148=\left|\frac{1}{2 m^{3}}-\frac{1}{3 m^{3}}\right|=\left|\frac{1}{6 m^{3}}\right|=\frac{1}{48}(given)
16m3=±148\Rightarrow \frac{1}{6 m^{3}}=\pm \frac{1}{48}
m3=±8\Rightarrow m^{3}=\pm 8
Now, if m3=8m^{3}=8
m3=(2)3m=2\Rightarrow m^{3}=(2)^{3} \Rightarrow m=2
If m3=8\quad m^{3}=-8
m3=(2)3m=2\Rightarrow m^{3}=(-2)^{3} \Rightarrow m=-2