Question
Mathematics Question on applications of integrals
The area of the region enclosed between parabola y2=x and the line y=mx is 481.
A
-2
B
-1
C
1
D
2
Answer
2
Explanation
Solution
Equation of parabola is y2=x and line y=mx For intersection point of both curves put x=y2, we get
y=my2
⇒y(my−1)=0
⇒y=0 or y=m1
Then, x=0 or x=m21
∴ Intersection points are (0,0) and P(m21,m1)
∴ Required area =\int_\limits{0}^{1 / m}\left|\left(\frac{y}{m}-y^{2}\right)\right| d y=\left|\left[\frac{y^{2}}{2 m}-\frac{y^{3}}{3}\right]_{0}^{1 / m}\right|
=2m31−3m31=6m31=481(given)
⇒6m31=±481
⇒m3=±8
Now, if m3=8
⇒m3=(2)3⇒m=2
If m3=−8
⇒m3=(−2)3⇒m=−2