Solveeit Logo

Question

Question: The area of the region described by \[A=\left\\{ \left( x,y \right)={{x}^{2}}+{{y}^{2}}\le 1 \right\...

The area of the region described by A=\left\\{ \left( x,y \right)={{x}^{2}}+{{y}^{2}}\le 1 \right\\}\text{ and }\left\\{ {{y}^{2}}\le 1-x \right\\} is

& A.\dfrac{\pi }{2}+\dfrac{4}{3} \\\ & B.\dfrac{\pi }{2}-\dfrac{4}{3} \\\ & C.\dfrac{\pi }{2}-\dfrac{2}{3} \\\ & D.\dfrac{\pi }{2}+\dfrac{2}{3} \\\ \end{aligned}$$
Explanation

Solution

To solve this question, first we will separately draw figure and shaded region of \left\\{ {{x}^{2}}+{{y}^{2}}\le 1 \right\\}\text{ and }\left\\{ {{y}^{2}}\le 1-x \right\\} then merge them to get the common region between them. Then, observing the region obtained we can easily find the area by using integration formula given as
1x2dx=x21x2+12sin1x and 1xdx=23(1x)32\int{\sqrt{1-{{x}^{2}}}dx=\dfrac{x}{2}}\sqrt{1-{{x}^{2}}}+\dfrac{1}{2}{{\sin }^{-1}}x\text{ and }\int{\sqrt{1-x}}dx=\dfrac{2}{3}{{\left( 1-x \right)}^{\dfrac{3}{2}}}
Standard equation of circle is x2+y2=r2{{x}^{2}}+{{y}^{2}}={{r}^{2}} where r is radius of circle and standard equation of parabola is y2=4ax{{y}^{2}}=4ax

Complete step-by-step solution:
Given that, x2+y21 . . . . . . . . . . . . . (i){{x}^{2}}+{{y}^{2}}\le 1\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}
This is an equation of a circle and inside of it having radius 1. It can be drawn as:

The second figure is y21x . . . . . . . . . . . . (ii){{y}^{2}}\le 1-x\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}
This curve represents a parabola which is symmetric about negative x-axis and vertex is (1, 0) then it can be drawn as: also y21x{{y}^{2}}\le 1-x gives region inside of parabola.

Because putting (x,y)=(0,0)\left( x,y \right)=\left( 0,0 \right) gives 010\le 1 which is correct. So, (0, 0) comes inside region.
Now, we will merge the graph obtained of equation (i) and equation (ii):
Then, it looks like; the common region is given as

Area of the required region can be obtained by subtracting area of outer portion (the portion of circle which is not shaded) to area of circle.
= area of circle  area of outer portion of circle . . . . . (iii)\text{A }=\text{ area of circle }-\text{ area of outer portion of circle }.\text{ }.\text{ }.\text{ }.\text{ }.\text{ }\left( \text{iii} \right)
Area of circle of radius r is given by πr2\pi {{r}^{2}}
Here, r = 1 then area of circle π(1)2π\pi {{\left( 1 \right)}^{2}}\Rightarrow \pi
Now, to find area of outer portion of circle, we will first calculate the area of outer portion which is above x-axis and then multiply it by 2 as both above and lower portion are symmetric.
Area of outer portion 2×01circle - parabola\Rightarrow 2\times \int\limits_{0}^{1}{\text{circle - parabola}}
Area of outer portion 2×01circle equation - parabola\Rightarrow 2\times \int\limits_{0}^{1}{\text{circle equation - parabola}}
We have x2+y2=1{{x}^{2}}+{{y}^{2}}=1 is circumference of circle.
y2=1x2\Rightarrow {{y}^{2}}=1-{{x}^{2}}
Taking square root y=1x2\Rightarrow y=\sqrt{1-{{x}^{2}}}
So this is the required value of y for circle. Here, only +1x2+\sqrt{1-{{x}^{2}}} is considered as we are calculating for the above portion of the circle.
Now, for parabola y2=1x\Rightarrow {{y}^{2}}=1-x
Taking square root y=1x\Rightarrow y=\sqrt{1-x}
This is the value of y for the parabola.
Substituting both y values for area of outer circle, we get:
Area of outer circle 2×01(1x21x)dx\Rightarrow 2\times \int\limits_{0}^{1}{\left( \sqrt{1-{{x}^{2}}}-\sqrt{1-x} \right)}dx
Now, formula of integration of 1x2\sqrt{1-{{x}^{2}}} is

& \Rightarrow \int\limits_{0}^{1}{\sqrt{1-{{x}^{2}}}}dx=\left( \dfrac{x}{2}\sqrt{1-{{x}^{2}}}+\dfrac{1}{2}{{\sin }^{-1}}x \right)_{0}^{1}{{}}\text{ and } \\\ & \int\limits_{0}^{1}{\sqrt{1-x}dx=\int\limits_{0}^{1}{{{\left( 1-x \right)}^{\dfrac{1}{2}}}dx}} \\\ & \Rightarrow \left( \dfrac{{{\left( 1-x \right)}^{\dfrac{1}{2}+1}}}{\dfrac{1}{2}+1}\right)_{0}^{1}{{}} \\\ & \Rightarrow \int{\sqrt{1-x}dx= -\dfrac{2}{3}{{\left( 1-x \right)}^{\dfrac{3}{2}}}} \\\ \end{aligned}$$ Using these both values in above we get: Area of outer circle $$\Rightarrow 2\times \left( \dfrac{x}{2}\sqrt{1-{{x}^{2}}}+\dfrac{1}{2}{{\sin }^{-1}}x+\dfrac{2}{3}{{\left( 1-x \right)}^{\dfrac{3}{2}}} \right)_{0}^{1}$$ Area of outer circle $$\Rightarrow 2\left( \dfrac{1}{2}\sqrt{1-1}+\dfrac{1}{2}{{\sin }^{-1}}1+\dfrac{2}{3}{{\left( 1-1 \right)}^{\dfrac{3}{2}}}-0- \dfrac{1}{2}{{\sin }^{-1}}0-\dfrac{2}{3}{{\left( 1-0 \right)}^{\dfrac{3}{2}}} \right)$$ Area of outer circle $$\Rightarrow 2\times \dfrac{1}{2}\times \dfrac{\pi }{2}-\dfrac{2}{3}\times 2$$ Area of outer circle $\Rightarrow \dfrac{\pi }{2}-\dfrac{4}{3}$ Finally, we will calculate area of required region A. Substituting the value of area of circle and area of outer circle obtained above in equation (iii) we get: $$\begin{aligned} & \text{Area = }\pi \text{-}\left( \dfrac{\pi }{2}-\dfrac{4}{3} \right) \\\ & \Rightarrow \pi -\dfrac{\pi }{2}+\dfrac{4}{3} \\\ & \Rightarrow \dfrac{\pi }{2}+\dfrac{4}{3} \\\ \end{aligned}$$ **Hence, the value of area of given region is $A=\dfrac{\pi }{2}+\dfrac{4}{3}$ which is option A.** **Note:** Confusion can arise at the point where we have to determine whether the region outer of the parabola is to be considered or inside of it. In such cases, put $\left( x,y \right)=\left( 0,0 \right)$ and check that whether it is satisfied or not. If it is satisfied then the region having (0, 0) is correct otherwise the other region left is possible. Also, there is one more key point in this question, at the place where we are considering $$y=+\sqrt{1-{{x}^{2}}}$$ for finding the area of the circle. Even if you proceed to select the negative part that is $$y=-\sqrt{1-{{x}^{2}}}$$ then also you have to make it positive as the area of any region is never negative.