Solveeit Logo

Question

Mathematics Question on Area between Two Curves

The area of the region bounded by the parabola (y2)2=x1(y-2)^2=x-1 , the tangent to the parabola at the point (2,3)(2, 3) and the xx-axis is

A

33

B

66

C

99

D

1212

Answer

99

Explanation

Solution

Equation of tangent at (2, 3) to (y2)2=x1(y-2)^2=x-1 is S1=0S_1=0 ?x2y+4=0? x - 2y + 4 = 0 Required Area = Area of ?OCB+?OCB + Area of OAPDOAPD - Area of ?PCD?PCD =12(4×2)+=\frac{1}{2}\left(4\times2\right)+ 03(y24y+5)dy\int\limits^{3}_{{0}}(y^2-4y+5)dy- 12(1×2)\frac{1}{2}\left(1\times2\right) =4+[y332y2+5y]031=4918+15+1=4+\left[\frac{y^{3}}{3}-2y^{2}+5y\right]^{^{^3}}_{_{_0}}-1=4-9-18+15+-1 =2819=9=28-19=9 s units (or) Area =03(2y4y2+4y5)dy03(y2+6y5)dy==\int\limits^{3}_{{0}}(2y-4-y^2+4y-5)dy-\int\limits^{3}_{{0}}(y^2+6y-5)dy=- 03(3y)2dy\int\limits^{3}_{{0}}(3-y)^2\,dy =[(y3)33]03=273=9=\left[\frac{\left(y-3\right)^{3}}{3}\right]^{^{^3}}_{_{_0}}=\frac{27}{3}=9 sunits