Solveeit Logo

Question

Mathematics Question on Area of the region bounded

The area of the region bounded by the lines x+2y=12x + 2y = 12, x=2x = 2, x=6x = 6, and the xx-axis is:

A

34 sq units34 \text{ sq units}

B

20 sq units20 \text{ sq units}

C

24 sq units24 \text{ sq units}

D

16 sq units16 \text{ sq units}

Answer

16 sq units16 \text{ sq units}

Explanation

Solution

To find the area of the region bounded by x+2y=12x + 2y = 12, x=2x = 2, x=6x = 6, and the x-axis, we start by expressing yy in terms of xx from the equation x+2y=12x + 2y = 12:

y=12x2y = \frac{12 - x}{2}

The area between x=2x = 2 and x=6x = 6 under the line y=12x2y = \frac{12 - x}{2} is given by:

Area=2612x2dx\text{Area} = \int_{2}^{6} \frac{12 - x}{2} \, dx

Evaluating this integral:

=2612x2dx=1226(12x)dx= \int_{2}^{6} \frac{12 - x}{2} \, dx = \frac{1}{2} \int_{2}^{6} (12 - x) \, dx

=12[12xx22]26= \frac{1}{2} \left[ 12x - \frac{x^2}{2} \right]_{2}^{6}

=12[(12×6622)(12×2222)]= \frac{1}{2} \left[ \left( 12 \times 6 - \frac{6^2}{2} \right) - \left( 12 \times 2 - \frac{2^2}{2} \right) \right]

=12[(7218)(242)]= \frac{1}{2} \left[ (72 - 18) - (24 - 2) \right]

=12[5422]=12×32=16= \frac{1}{2} [54 - 22] = \frac{1}{2} \times 32 = 16

Therefore, the area of the region is 16 sq units.