Solveeit Logo

Question

Question: The area of the region bounded by the lines x = 0, x = \(\frac { \pi } { 2 }\) and ƒ(x) = sin x, g(x...

The area of the region bounded by the lines x = 0, x = π2\frac { \pi } { 2 } and ƒ(x) = sin x, g(x) = cos x is-

A

2 (2\sqrt { 2 } + 1)

B

3\sqrt { 3 } – 1

C

2(3\sqrt { 3 } – 1)

D

2 (2\sqrt { 2 }– 1)

Answer

2 (2\sqrt { 2 }– 1)

Explanation

Solution

Required area =0π/2(sinxcosx)dx\int _ { 0 } ^ { \pi / 2 } ( \sin x - \cos x ) d x= 0π/4(cosxsinx)dx\int _ { 0 } ^ { \pi / 4 } ( \cos x - \sin x ) d x+ π/4π/2(sinxcosx)dx\int _ { \pi / 4 } ^ { \pi / 2 } ( \sin x - \cos x ) d x

= [sinx+cosx]0π/4[ \sin x + \cos x ] _ { 0 } ^ { \pi / 4 } + [cosxsinx]π/4π/2[ - \cos x - \sin x ] _ { \pi / 4 } ^ { \pi / 2 }

= 12\frac { 1 } { \sqrt { 2 } } + 12\frac { 1 } { \sqrt { 2 } } – (0 + 1) – {1(12+12)}\left\{ 1 - \left( \frac { 1 } { \sqrt { 2 } } + \frac { 1 } { \sqrt { 2 } } \right) \right\}

= 42\frac { 4 } { \sqrt { 2 } }– 2 = 22\sqrt { 2 }– 2 = 2(2\sqrt { 2 } – 1).