Solveeit Logo

Question

Mathematics Question on applications of integrals

The area of the region bounded by the curves y=x3,y=1x,x=2y=x^{3}, y=\frac{1}{x}, x=2 is

A

4loge24- \log_{e} 2

B

14+loge2\frac{1}{4}+ \log_{e} 2

C

3loge23- \log_{e} 2

D

154loge2\frac{15}{4}- \log_{e}2

Answer

14+loge2\frac{1}{4}+ \log_{e} 2

Explanation

Solution

First of all we draw the graph,
y=x3,y=1x,x=2y=x^{3}, y=\frac{1}{x}, x=2

\therefore Required area i.e., (OMPNO)
=01x3dx+121xdx=\int\limits_{0}^{1} x^{3} d x+\int\limits_{1}^{2} \frac{1}{x} d x
=[x44]01+[logex]12=\left[\frac{x^{4}}{4}\right]_{0}^{1}+\left[\log _{e} x\right]_{1}^{2}
=14+loge2=\frac{1}{4}+\log _{e} 2