Solveeit Logo

Question

Question: The area of the region bounded by the curve y=2x–\(x ^ { 2 }\) and line y =x is...

The area of the region bounded by the curve y=2x–x2x ^ { 2 } and line y =x is

A

12\frac { 1 } { 2 }

B

13\frac { 1 } { 3 }

C

14\frac { 1 } { 4 }

D

16\frac { 1 } { 6 }

Answer

16\frac { 1 } { 6 }

Explanation

Solution

The given curve is y=2xx2y = 2 x - x ^ { 2 }

y=(x22x+1)+1\Rightarrow y = - \left( x ^ { 2 } - 2 x + 1 \right) + 1

y1=(x1)2\Rightarrow y - 1 = - ( x - 1 ) ^ { 2 } it represents a downward parabola with vertex (1,1)

Its points of intersection with the line y = x are (0,0) and (1,1).

Required area = shaded region

=01(2xx2)dx01xdx= \int _ { 0 } ^ { 1 } \left( 2 x - x ^ { 2 } \right) d x - \int _ { 0 } ^ { 1 } x d x =01(xx2)dx=(x22x33)01= \int _ { 0 } ^ { 1 } \left( x - x ^ { 2 } \right) d x = \left( \frac { x ^ { 2 } } { 2 } - \frac { x ^ { 3 } } { 3 } \right) _ { 0 } ^ { 1 }

=1213=16= \frac { 1 } { 2 } - \frac { 1 } { 3 } = \frac { 1 } { 6 } .