Solveeit Logo

Question

Mathematics Question on applications of integrals

The area of the region bounded by the curve y=x3y = x^3, its tangent at (1,1)(1, 1) and xaxisx-axis is

A

112\frac{1}{12} sq unit

B

116\frac{1}{16} sq unit

C

217\frac{2}{17} sq unit

D

215\frac{2}{15} sq unit

Answer

112\frac{1}{12} sq unit

Explanation

Solution

We have, y=x3y=x^{3} and A(1,1)A(1,1)
dydx=3x2\therefore \frac{d y}{d x}=3 x^{2} ...(i)
On putting x=1x=1 in E (i), we get
dydx=3(1)2=3\frac{d y}{d x}=3(1)^{2}=3
\therefore Equation of tangent at A(1,1)A(1,1) is
y1=3(x1)y=3x2y-1=3(x-1) \Rightarrow y=3 x-2

\therefore Required area
=01x3dx2/31(3x2)dx=\int\limits_{0}^{1} x^{3} d x-\int\limits_{2 / 3}^{1}(3 x-2) d x
=[x44]01[3x222x]2/31=\left[\frac{x^{4}}{4}\right]_{0}^{1}-\left[\frac{3 x^{2}}{2}-2 x\right]_{2 / 3}^{1}
=14[(322)(2343)]=\frac{1}{4}-\left[\left(\frac{3}{2}-2\right)-\left(\frac{2}{3}-\frac{4}{3}\right)\right]
=112=\frac{1}{12} sq unit