Solveeit Logo

Question

Question: The area of the region bounded by the curve y = \(\frac { 16 - x ^ { 2 } } { 4 }\) and y = sec<sup>...

The area of the region bounded by the curve y = 16x24\frac { 16 - x ^ { 2 } } { 4 } and y = sec–1 [– sin2 x] (where [.] denotes the greatest integer function) -

A

13\frac { 1 } { 3 }(4 – p)3/2

B

8(4 – p)3/2

C

83\frac { 8 } { 3 }(4 – p)3/2

D

83\frac { 8 } { 3 }(4 – p)1/2

Answer

83\frac { 8 } { 3 }(4 – p)3/2

Explanation

Solution

0 £ sin2 x £ 1 Ž – 1 £ – sin2 x £ 0 \ [– sin2 x] = 0 or – 1

let sec–1 is not defined hence y = sec–1 [– sin2 x] = sec–1 (–1) =

p Now p = Ž x2 = 16 – 4p = 4(4 – p) Ž x = ± 24π\sqrt { 4 - \pi }The required area =

=83= \frac { 8 } { 3 } (4 – p)3/2