Solveeit Logo

Question

Question: The area of the region bounded by the curve a<sup>4</sup>y<sup>2</sup> = (2a – x) x<sup>5</sup> is t...

The area of the region bounded by the curve a4y2 = (2a – x) x5 is to that of the circle whose radius is a, is given by the ratio –

A

4 : 5

B

5 : 8

C

2 : 3

D

3 : 2

Answer

5 : 8

Explanation

Solution

Given curve a4y2 = (2a – x) x5

cutt off x-axis when y = 0 0 = (2a – x) x5 \ x = 0, 2aHence the area bounded by the curve

a4y2 = (2a – x) x5 is

A1 = 02a(2ax)a2\int _ { 0 } ^ { 2 a } \frac { \sqrt { ( 2 a - x ) } } { a ^ { 2 } }x5/2 dx Put x = 2a sin2 q \ dx = 4a sin q cos q dq \A1 = dq = sin6q . cos2q dq

= 32a2 . . π2\frac { \pi } { 2 } = 5πa28\frac { 5 \pi \mathrm { a } ^ { 2 } } { 8 } (By walli's formula)

Area of circle A2 = pa2

\ A1 A2=58\frac { \mathrm { A } _ { 1 } } { \mathrm {~A} _ { 2 } } = \frac { 5 } { 8 } Ž A1 : A2 = 5 : 8.