Solveeit Logo

Question

Mathematics Question on applications of integrals

The area of the region between the curves y=1+sinxcosxy= \sqrt \frac{1 + sin x}{cos x} and y=1sinxcosxy= \sqrt \frac{1 - sin x}{cos x} and bounded by the lines x=0x = 0 and x=π4x = \frac{\pi}{4} is

A

(a)021t(1+t2)1t2dt(a) \int \limits_0^{\sqrt 2 -1} \frac{t}{(1 + t^2) \sqrt {1 - t^2}} dt

B

(b)0214t(1+t2)1t2dt(b) \int \limits_0^{\sqrt 2 -1} \frac{4t}{(1 + t^2) \sqrt {1 - t^2}} dt

C

(c)02+14t(1+t2)1t2dt(c) \int \limits_0^{\sqrt 2 +1} \frac{4t}{(1 + t^2) \sqrt {1 - t^2}} dt

D

(d)02+1t(1+t2)1t2dt(d) \int \limits_0^{\sqrt 2 +1} \frac{t}{(1 + t^2) \sqrt {1 - t^2}} dt

Answer

(b)0214t(1+t2)1t2dt(b) \int \limits_0^{\sqrt 2 -1} \frac{4t}{(1 + t^2) \sqrt {1 - t^2}} dt

Explanation

Solution

Required area =0π/4(1+sinxcosx1sinxcosx)dx = \int \limits_0^{\pi/4} \bigg (\sqrt \frac{1 + sin x}{cos x} - \sqrt \frac{1 - sin x}{cos x}\bigg) dx
[1+sinxcosx>1sinxcosx>0]\, \, \, \, \, \, \, \, \, \, \, \, \Bigg [\because \frac{1 + sin x}{cos x} > \frac{1 - sin x}{cos x} > 0 \Bigg]
=0π/4(1+2tanx21+tan2x21tan2x21+tan2x212tanx21+tan2x21tan2x21+tan2x2)dx\, \, \, \, \, \, \, \, = \int \limits_0^{\pi/4} \Bigg ( \sqrt { \frac{ 1 + \frac{ 2 tan \, \frac{x}{2}}{ 1 + tan^2 \frac{x}{2}}}{ \frac{ 1 -tan^2 \frac{x}{2}}{ 1 + tan^2 \frac{x}{2}}}} - \sqrt { \frac{ 1 - \frac{ 2 tan \, \frac{x}{2}}{ 1 + tan^2 \frac{x}{2}}}{ \frac{ 1 -tan^2 \frac{x}{2}}{ 1 + tan^2 \frac{x}{2}}}} \Bigg) dx
=0π/4(1+tanx21tanx21tanx21+tanx2)dx= \int \limits_0^{\pi/4} \Bigg (\sqrt \frac{1 + tan \frac{x}{2}}{1 - tan \frac{x}{2}} - \sqrt{ \frac{1 - tan \frac{x}{2}}{ 1 + tan \frac{x}{2}}} \Bigg) dx
=0π/41+tanx21+tanx21tan2x2dx=0π/42tanx21tan2x2dx= \int \limits_0^{\pi/4} \frac{1 + tan\frac{x}{2} - 1 + tan\frac{x}{2}} {\sqrt {1 - tan^2\frac{x}{2}}} dx = \int \limits_0^{\pi/4} \frac{2tan\frac{x}{2}}{\sqrt{1 - tan^2\frac{x}{2}}} dx
Put tanx2=t12sec2x2dx=dttan\frac{x}{2} = t \Rightarrow \frac{1}{2}sec^2\frac{x}{2} dx = dt
=0tanπ/84tdt(1+t2)1t2\, \, \, \, \, \, = \int \limits_0^{tan{\pi/8}} \frac{4t dt}{(1 + t^2)\sqrt{1 - t^2}}
As 0214tdt(1+t2)1t2[tanπ8=21]\, \, \, \, \, \, \, \, \int \limits_0^{\sqrt2 - 1}\frac{4t dt}{(1 + t^2)\sqrt{1 - t^2}}\, \, \, [\because tan\frac{\pi}{8}= \sqrt 2 -1]