Solveeit Logo

Question

Question: The area of the rectangle formed by the perpendiculars from the centre of the ellipse \(\frac{x^{2}}...

The area of the rectangle formed by the perpendiculars from the centre of the ellipse x2a2+y2b2\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}}= 1 to the tangent and normal at a point whose eccentric angle is π4\frac{\pi}{4} is

A

(a2b2)aba2+b2\frac{(a^{2}–b^{2})ab}{a^{2} + b^{2}}

B

(a2+b2)aba2b2\frac{(a^{2} + b^{2})ab}{a^{2}–b^{2}}

C

a2b2ab(a2+b2)\frac{a^{2}–b^{2}}{ab(a^{2} + b^{2})}

D

a2+b2ab(a2b2)\frac{a^{2} + b^{2}}{ab(a^{2}–b^{2})}

Answer

(a2b2)aba2+b2\frac{(a^{2}–b^{2})ab}{a^{2} + b^{2}}

Explanation

Solution

Equation of the tangent at π4\frac{\pi}{4} is

x(12)a+y(12)b\frac{x\left( \frac{1}{\sqrt{2}} \right)}{a} + \frac{y\left( \frac{1}{\sqrt{2}} \right)}{b}= 1

i.e., xa+yb\frac{x}{a} + \frac{y}{b}– Ö2 = 0 ... (1)

Equation of the normal at π4\frac{\pi}{4} is

xbya=ab2ba2\frac{x}{b}–\frac{y}{a} = \frac{a}{b\sqrt{2}}–\frac{b}{a\sqrt{2}}... (2)

p1 = length of the perpendicular from the centre to the tangent

= 21a2+1b2\left| \frac{–\sqrt{2}}{\sqrt{\frac{1}{a^{2}} + \frac{1}{b^{2}}}} \right| = 2aba2+b2\frac{\sqrt{2}ab}{\sqrt{a^{2} + b^{2}}}

p2 = length of the perpendicular from the centre to the normal

= ab2ba21a2+1b2\left| \frac{\frac{a}{b\sqrt{2}}–\frac{b}{a\sqrt{2}}}{\sqrt{\frac{1}{a^{2}} + \frac{1}{b^{2}}}} \right| = a2b22a2+b2\left| \frac{a^{2}–b^{2}}{\sqrt{2}\sqrt{a^{2} + b^{2}}} \right|

Area of the rectangle = p1p2 = ab(a2b2)a2+b2\frac{ab(a^{2}–b^{2})}{a^{2} + b^{2}}