Solveeit Logo

Question

Mathematics Question on Surface Areas and Volumes

The area of the polygon, whose vertices are the non-real roots of the equation zˉ=iz2\bar z = iz^2 is

A

334\frac{3\sqrt 3 }{4}

B

332\frac{3\sqrt 3 }{2}

C

32\frac{3}{2}

D

34\frac{3}{4}

Answer

334\frac{3\sqrt 3 }{4}

Explanation

Solution

zˉ=iz2\bar z = iz^2

Let z=x+iyz = x+ iy

xiy=i(x2y2+2xiy)x-iy=i(x^2-y^2+2xiy)

xiy=i(x2y2)2xyx-iy = i(x^2-y^2)-2xy

  x=2yx  or  x2y2=y∴\; x = -2yx \;or \;x^2-y^2=-y

x=0x = 0 or

y=12y = - \frac{1}{2}

Instance-A

x=0x=0 and y2=y-y^2 = -y , y=0,1y = 0,1

Instance-B

y=12y=-\frac{1}{2}

x214=12⇒ x^2-\frac{1}{4}=\frac{1}{2}

x=+32⇒ x = \overset{+}{-}\frac{ \sqrt3}{2}

z=0,i,32i2,32i2z = \\{0,i, \frac{√3}{2}-\frac{i}{2}, \frac{√3}{2}-\frac{i}{2}\\}

Area of polygon

= 12011 3212132121\frac{1}{2}\begin {vmatrix}0 &1& 1\\\ \frac{√3}{2} &\frac{-1}{2} &1 \\\\\frac{- √3}{2}& \frac{-1}{2} &1\end {vmatrix}

= 12332\frac{1}{2}| - √3 - \frac{√3}{2}|

= 334\frac{3√3}{4}