Solveeit Logo

Question

Mathematics Question on Area between Two Curves

The area of the plane region bounded by the curve x=y22x={{y}^{2}}-2 and the line y=xy=-x is (in square units)

A

133\frac{13}{3}

B

25\frac{2}{5}

C

95\frac{9}{5}

D

52\frac{5}{2}

Answer

95\frac{9}{5}

Explanation

Solution

Given curves x=y22x={{y}^{2}}-2 and y=xy=x Thus, interection point are (1,1)(-1,1) and (2,2)(2,-2) We are to find the area of shaded part Area of ABC=21x+2dxABC=\int_{-2}^{-1}{\sqrt{x+2}}dx
=[23(x+2)3/2]21=23=\left[ \frac{2}{3}{{(x+2)}^{3/2}} \right]_{-2}^{-1}=\frac{2}{3} sq unit Area of BCO=10xdx=(x22)10BCO=\int_{-1}^{0}{-x}\,dx=\left( -\frac{{{x}^{2}}}{2} \right)_{-1}^{0}
=12sq unit=\frac{1}{2}sq\text{ }unit Area of ADO
=20x+2dx=[23(x+2)3/2]20=\int_{-2}^{0}{\sqrt{x+2}}dx=\left[ \frac{2}{3}{{(x+2)}^{3/2}} \right]_{-2}^{0}
=432=\frac{4}{3}\sqrt{2} Area of, ODE=area of ODEFare of OFEODE=area\text{ }of\text{ }ODEF-are\text{ }of\text{ }OFE 02x+2dx02(x)dx\int_{0}^{2}{\sqrt{x+2}}dx-\int_{0}^{2}{(-x)}dx
=\left\\{ \frac{2}{3}{{(x+2)}^{3/2}} \right\\}_{0}^{2}-\left( -\frac{{{x}^{2}}}{2} \right)_{0}^{2}
=(163423)(2)=\left( \frac{16}{3}-\frac{4\sqrt{2}}{3} \right)-(2) (neglecting the negative sign)
=(163423)(2)=\left( \frac{16}{3}-\frac{4\sqrt{2}}{3} \right)-(2)
\therefore Required area
=23+12+423+1634232=\frac{2}{3}+\frac{1}{2}+\frac{4\sqrt{2}}{3}+\frac{16}{3}-\frac{4\sqrt{2}}{3}-2
=23+12+1632=\frac{2}{3}+\frac{1}{2}+\frac{16}{3}-2
=276=92sunit=\frac{27}{6}=\frac{9}{2}s\,unit