Solveeit Logo

Question

Mathematics Question on Product of Two Vectors

The area of the parallelogram with a\vec{a} and b\vec{b} as adjacent sides is 20sunits20\, s \,units. Then the area of the parallelogram having 7a+5b7\vec{a} + 5\vec{b} and 8a+11b8\vec{a} + 11\vec{b} as adjacent sides is

A

2960sunits2960\, s\, units

B

740sunits740\, s\, units

C

1340sunits1340\, s\, units

D

3400sunits3400\, s\, units

Answer

740sunits740\, s\, units

Explanation

Solution

Area of parallelogram having adjacent sides a\vec{a} and b\vec{b} = 20 s units
a×b=20\Rightarrow \:\: | \vec{a} \times \vec{b}| = 20
Now, area of parallelogram
=(7a+5b)×(8a+11b)= |(7\vec{a} + 5 \vec{b}) \times ( 8 \vec{a} + 11\vec{b})|
=56(a×a)+77(a×b)+40(b×a)+55(b×b)= \left|56\left(\vec{a} \times \vec{a}\right)+77\left(a \times \vec{b}\right)+40\left(\vec{b}\times \vec{a}\right)+55\left(\vec{b}\times \vec{b}\right)\right|
=77(a×b)40(a×b)= \left|77\left(\vec{a} \times \vec{b}\right)-40\left(\vec{a}\times \vec{b}\right)\right|
=7740a×b=(37×20)=740= \left|77 -40\right|\left|a\times b\right|= \left(37\times 20\right) = 740 s units