Solveeit Logo

Question

Question: The area of the parallelogram whose sides are represented by the vectors \(\widehat{j} + 3\widehat{k...

The area of the parallelogram whose sides are represented by the vectors j^+3k^\widehat{j} + 3\widehat{k} and i^+2j^k^\widehat{i} + 2\widehat{j} - \widehat{k} is

A

61\sqrt{61}sq.unit

B

59\sqrt{59}sq.unit

C

49\sqrt{49}sq.unit

D

52\sqrt{52}sq.unit

Answer

59\sqrt{59}sq.unit

Explanation

Solution

A=j^+3k^\overrightarrow{A} = \widehat{j} + 3\widehat{k},B=i^+2j^k^\overrightarrow{B} = \widehat{i} + 2\widehat{j} - \widehat{k}

\widehat{i} & \widehat{j} & \widehat{k} \\ 0 & 1 & 3 \\ 1 & 2 & - 1 \end{matrix} ⥂ \right| = - 7\widehat{i} + 3\widehat{j} - \widehat{k}$$ Hence area = $|\overrightarrow{C}| = \sqrt{49 + 9 + 1} = \sqrt{59}squnit$