Solveeit Logo

Question

Mathematics Question on Product of Two Vectors

The area of the parallelogram whose adjacent sides are i^+k^\hat{i}+ \hat {k} and 2i^+j^+k^2\hat {i}+\hat {j}+\hat {k} is

A

2\sqrt {2}

B

3\sqrt {3}

C

33

D

44

Answer

3\sqrt {3}

Explanation

Solution

The correct answer is B:3\sqrt{3}
Let adjacent sides of a parallelogram are
a=i^+k^a =\hat{ i }+\hat{ k } and b=2i^+j^+k^b =2 \hat{ i }+\hat{ j }+\hat{ k }
\therefore Area of parallelogram =a×b=\| a \times b \|
i^j^k^ 101 210\begin{Vmatrix}\hat{i}&\hat{j}&\hat{k}\\\ 1&0&1\\\ 2&1&0\end{Vmatrix}
=i^(01)j^(12)+k^(10)=|\hat{ i }(0-1)-\hat{ j }(1-2)+\hat{ k }(1-0)|
a×b=i^+j^+k^\therefore |\vec{a}\times\vec{b}|=|-\hat{ i }+\hat{ j }+\hat{ k }|
=(1)2+(1)2+(1)2=3  sq.unit=\sqrt{(-1)^{2}+(1)^{2}+(1)^{2}}= \sqrt{3}\space sq.unit
vector