Question
Mathematics Question on Area Of A Parallelogram
The area of the parallelogram, whose adjacent sides are given by the vectors a=2i^−j^+5k^ and b=2i^+j^+2k^, is:
A
105
B
101
C
103
D
102
Answer
101
Explanation
Solution
The area of a parallelogram formed by two vectors is given by the magnitude of their cross product:
Area=∥a×b∥.
Compute a×b:
a×b=i^ 2 2j^−11k^52.
Expand the determinant:
a×b=i^−1 152−j^2 252+k^2 2−11.
Calculate each minor:
−1 152=(−1)(2)−(5)(1)=−2−5=−7,
2 252=(2)(2)−(5)(2)=4−10=−6,
2 2−11=(2)(1)−(−1)(2)=2+2=4.
Substitute back into the determinant:
a×b=−7i^+6j^+4k^.
Find the magnitude of a×b:
∥a×b∥=(−7)2+(6)2+(4)2=49+36+16=101.
Thus, the area of the parallelogram is:
Area=101.