Solveeit Logo

Question

Mathematics Question on Area Of A Parallelogram

The area of the parallelogram, whose adjacent sides are given by the vectors a=2i^j^+5k^\vec{a} = 2\hat{i} - \hat{j} + 5\hat{k} and b=2i^+j^+2k^\vec{b} = 2\hat{i} + \hat{j} + 2\hat{k}, is:

A

105\sqrt{105}

B

101\sqrt{101}

C

103\sqrt{103}

D

102\sqrt{102}

Answer

101\sqrt{101}

Explanation

Solution

The area of a parallelogram formed by two vectors is given by the magnitude of their cross product:

Area=a×b.\text{Area} = \| \vec{a} \times \vec{b} \|.

Compute a×b\vec{a} \times \vec{b}:

a×b=i^j^k^ 215 212.\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\\ 2 & -1 & 5 \\\ 2 & 1 & 2 \end{vmatrix}.

Expand the determinant:

a×b=i^15 12j^25 22+k^21 21.\vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} -1 & 5 \\\ 1 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 5 \\\ 2 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -1 \\\ 2 & 1 \end{vmatrix}.

Calculate each minor:

15 12=(1)(2)(5)(1)=25=7,\begin{vmatrix} -1 & 5 \\\ 1 & 2 \end{vmatrix} = (-1)(2) - (5)(1) = -2 - 5 = -7,

25 22=(2)(2)(5)(2)=410=6,\begin{vmatrix} 2 & 5 \\\ 2 & 2 \end{vmatrix} = (2)(2) - (5)(2) = 4 - 10 = -6,

21 21=(2)(1)(1)(2)=2+2=4.\begin{vmatrix} 2 & -1 \\\ 2 & 1 \end{vmatrix} = (2)(1) - (-1)(2) = 2 + 2 = 4.

Substitute back into the determinant:

a×b=7i^+6j^+4k^.\vec{a} \times \vec{b} = -7 \hat{i} + 6 \hat{j} + 4 \hat{k}.

Find the magnitude of a×b\vec{a} \times \vec{b}:

a×b=(7)2+(6)2+(4)2=49+36+16=101.\| \vec{a} \times \vec{b} \| = \sqrt{(-7)^2 + (6)^2 + (4)^2} = \sqrt{49 + 36 + 16} = \sqrt{101}.

Thus, the area of the parallelogram is:

Area=101.\text{Area} = \sqrt{101}.