Solveeit Logo

Question

Question: The area of the parallelogram contained by the lines 4y-3x+1=0, 4y-3x-1=0, 3y-4x+1=0 and 3y-4x+2=0 i...

The area of the parallelogram contained by the lines 4y-3x+1=0, 4y-3x-1=0, 3y-4x+1=0 and 3y-4x+2=0 is pq\frac{p}{q}, (in lowest form), then p + q is __.

Answer

9

Explanation

Solution

Solution:

We are given four lines:

L1:4y3x+1=0,L2:4y3x1=0,L3:3y4x+1=0,L4:3y4x+2=0.\begin{aligned} L_1: &\quad 4y-3x+1=0,\\[5mm] L_2: &\quad 4y-3x-1=0,\\[5mm] L_3: &\quad 3y-4x+1=0,\\[5mm] L_4: &\quad 3y-4x+2=0. \end{aligned}

Step 1. Compute the distances between the parallel pairs using the distance formula for lines Ax+By+C=0Ax+By+C=0:

d=C2C1A2+B2.d=\frac{|C_2-C_1|}{\sqrt{A^2+B^2}}.

For L1L_1 and L2L_2 (with coefficients 3-3 and 44, so 9+16=5\sqrt{9+16}=5):

d1=(1)(+1)5=25.d_1=\frac{|(-1)-(+1)|}{5}=\frac{2}{5}.

For L3L_3 and L4L_4 (rewrite as 4x+3y+C=0-4x+3y+C=0, so the magnitude is again 55):

d2=215=15.d_2=\frac{|2-1|}{5}=\frac{1}{5}.

Step 2. Find the sine of the angle between the two families. The normals for the families are:

n1=(3,4)(from L1,L2),n2=(4,3)(from L3,L4).\begin{aligned} \mathbf{n_1}&=(-3,4) \quad (\text{from } L_1, L_2),\\[5mm] \mathbf{n_2}&=(-4,3) \quad (\text{from } L_3, L_4). \end{aligned}

Their dot product is:

n1n2=(3)(4)+43=12+12=24.\mathbf{n_1}\cdot\mathbf{n_2} = (-3)(-4)+4\cdot3=12+12=24.

The magnitudes are n1=n2=5|\mathbf{n_1}|=|\mathbf{n_2}|=5. Thus,

cosθ=2455=2425sinθ=1(2425)2=725.\cos \theta = \frac{24}{5\cdot5}=\frac{24}{25}\quad\Rightarrow\quad \sin\theta=\sqrt{1-\left(\frac{24}{25}\right)^2}=\frac{7}{25}.

Step 3. The area KK of the parallelogram formed by these lines is:

K=d1d2sinθ=(25)(15)725=225725=27.K=\frac{d_1 \, d_2}{\sin\theta} = \frac{\left(\frac{2}{5}\right)\left(\frac{1}{5}\right)}{\frac{7}{25}}=\frac{\frac{2}{25}}{\frac{7}{25}}=\frac{2}{7}.

Here, K=27K=\frac{2}{7} with p=2p=2 and q=7q=7; therefore, p+q=2+7=9p+q = 2+7 = 9.


Core Solution:

  1. Distance between 4y3x+1=04y-3x+1=0 and 4y3x1=04y-3x-1=0: d1=25d_1=\frac{2}{5}.

  2. Distance between 3y4x+1=03y-4x+1=0 and 3y4x+2=03y-4x+2=0: d2=15d_2=\frac{1}{5}.

  3. sinθ=725\sin \theta=\frac{7}{25} where θ\theta is the angle between the families.

  4. Area =d1d2sinθ=2/257/25=27=\frac{d_1d_2}{\sin \theta}=\frac{2/25}{7/25}=\frac{2}{7} so p+q=2+7=9p+q=2+7=9.