Solveeit Logo

Question

Question: The area of the loop of the curve x<sup>2</sup>− (y − 1)y<sup>2</sup> = 0 is equal to...

The area of the loop of the curve x2− (y − 1)y2 = 0 is equal to

A

815\frac { 8 } { 15 } sq. units

B

215\frac { 2 } { 15 } sq. units

C

415\frac { 4 } { 15 }sq. units

D

None of these

Answer

815\frac { 8 } { 15 } sq. units

Explanation

Solution

We have, x2 = (1 − y)y2 ⇒ 1 − y ≥ 0

⇒ y ≤ 1. Thus, for the loop, y ∈ [0, 1]. Area of required loop = 201y1ydy2 \int _ { 0 } ^ { 1 } y \sqrt { 1 - y } d y

=201(1y)ydy= 2 \int _ { 0 } ^ { 1 } ( 1 - y ) \sqrt { y } d y

=201(yy3/2)dy=2(23y3/225y5/2)01= 2 \int _ { 0 } ^ { 1 } \left( \sqrt { y } - y ^ { 3 / 2 } \right) d y = 2 \left( \frac { 2 } { 3 } y ^ { 3 / 2 } - \frac { 2 } { 5 } y ^ { 5 / 2 } \right) _ { 0 } ^ { 1 }

=815= \frac { 8 } { 15 } sq. units.