Solveeit Logo

Question

Mathematics Question on Area between Two Curves

The area of the ellipse x29+y24=1\frac{x^2}{9} + \frac{y^2}{4} = 1 is :

A

6

B

36 π\pi

C

36

D

6 π\pi

Answer

6 π\pi

Explanation

Solution

Given equation of ellipse is x29+y24=1\frac{x^2}{9} + \frac{y^2}{4} = 1 4x2+9y2=36 \Rightarrow 4x^{2} + 9y^{2} = 36 9y2=364x2\Rightarrow 9y^{2} = 36 - 4x^{2} y2=449x2\Rightarrow y^{2} = 4 - \frac{4}{9}x^{2} y=449x2\Rightarrow y = \sqrt{4 - \frac{4}{9}x^{2}} y=239x2\Rightarrow y = \frac{2}{3} \sqrt{9-x^{2}} Here, a=3a = 3, b=4b = 4 So, the required area (along x-axis) =403239x2dx=8303(3)2x2dx= 4\int\limits^{3}_{0} \frac{2}{3}\sqrt{9-x^{2}} dx = \frac{8}{3} \int\limits^{3}_{0}\sqrt{\left(3\right)^{2}-x^{2}} dx =83[12x9x2+92sin1(x3)]03= \frac{8}{3}\left[\frac{1}{2}x\sqrt{9-x^{2}} + \frac{9}{2}sin^{-1}\left(\frac{x}{3}\right)\right]^{3}_{0} (Using Formulaa2x2dx =12xa2x2+12a2sin1xa)\begin{pmatrix}\text{Using Formula}\,\int\sqrt{a^{2} - x^{2}}\,dx\\\ = \frac{1}{2}x\sqrt{a^{2} - x^{2}} + \frac{1}{2}a^{2} \,sin^{-1} \frac{x}{a}\end{pmatrix} =83[92sin1(35)92sin1(0)]= \frac{8}{3}\left[\frac{9}{2}sin^{-1}\left(\frac{3}{5}\right) - \frac{9}{2}sin^{-1}\left(0\right)\right] =83[92.π2]=6πsq= \frac{8}{3}\left[\frac{9}{2} . \frac{\pi}{2}\right] = 6\pi\,sq. units