Solveeit Logo

Question

Mathematics Question on applications of integrals

The area of the circle x2+y2=16x^2+y^2=16 exterior to the parabola y2=6xy^2=6x is

A

43(4π3)\frac{4}{3}(4π-\sqrt{3})

B

43(4π+3)\frac{4}{3}(4π+\sqrt{3})

C

43(8π3)\frac{4}{3}(8π-\sqrt{3})

D

43(4π+3)\frac{4}{3}(4π+\sqrt{3})

Answer

43(8π3)\frac{4}{3}(8π-\sqrt{3})

Explanation

Solution

The correct answer is C:=43(8π3)units=\frac{4}{3}(8π-\sqrt{3})units
The given equations are
x2+y2=16...(1)x^2+y^2=16...(1)
y2=6x...(2)y^2=6x...(2)
Parabola
Area bounded by the circle and parabola
=2[Area(OADO)+Area(ADBA)]=2[Area(OADO)+Area(ADBA)]
=2[0216xdx+2416x2dx]=2[∫^2_0\sqrt{16x}dx+∫^4_2\sqrt{16-x^2}dx]
=2[6[x3232]02]+2[x216x2+162sin1x4]24=2[\sqrt{6}\bigg[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\bigg]^2_0]+2\bigg[\frac{x}{2}\sqrt{16-x^2}+\frac{16}{2}sin^{-1}\frac{x}{4}\bigg]^4_2
=26×23[x32]02+2[8.π21648sin1(12)]=2\sqrt{6}\times\frac{2}{3}\bigg[x^{\frac{3}{2}}\bigg]^2_0+2[8.\frac{π}{2}-\sqrt{16-4}-8sin^{-1}(\frac{1}{2})]
=463(22)+2[4π128π6]=\frac{4\sqrt{6}}{3}(2\sqrt{2})+2[4π-\sqrt{12}-8\frac{π}{6}]
=1633+8π4383π=\frac{16\sqrt{3}}{3}+8π-4\sqrt{3}-\frac{8}{3}π
=43[43+6π332π]=\frac{4}{3}[4\sqrt{3}+6π-3\sqrt{3}-2π]
=43[3+4π]=\frac{4}{3}[\sqrt{3}+4π]
=43[4π+3]units=\frac{4}{3}[4π+\sqrt{3}]units
Area of circle=π(r)2=π(r)^2
=π(4)2=π(4)^2
=16πunits=16πunits
∴Required area=16π43[4π+3]=16π-\frac{4}{3}[4π+\sqrt{3}]
=43[4×3π4π3]=\frac{4}{3}[4\times3π-4π-\sqrt{3}]
=43(8π3)units=\frac{4}{3}(8π-\sqrt{3})units
Thus,the correct answer is C.