Solveeit Logo

Question

Question: The area of the circle and the area of a regular polygon of n sides and its perimeter equal to that ...

The area of the circle and the area of a regular polygon of n sides and its perimeter equal to that of the circle are in the ratio of

A

tan(πn):πn\tan \left( \frac { \pi } { n } \right) : \frac { \pi } { n }

B

cos(πn):πn\cos \left( \frac { \pi } { n } \right) : \frac { \pi } { n }

C

sin(πn):πn\sin \left( \frac { \pi } { n } \right) : \frac { \pi } { n }

D

cot(πn):πn\cot \left( \frac { \pi } { n } \right) : \frac { \pi } { n }

Answer

tan(πn):πn\tan \left( \frac { \pi } { n } \right) : \frac { \pi } { n }

Explanation

Solution

Let r be the radius of the circle and A1A _ { 1 } be its area A1=πr2\therefore A _ { 1 } = \pi r ^ { 2 }

Since the perimeter of the circle is the same as the perimeter of a regular polygon of n sides 2πr=na\therefore 2 \pi r = n a, where 'a' is the length of one side of the regular polygon, a=2πrn\therefore a = \frac { 2 \pi r } { n }

Let A2A _ { 2 } be the area of the polygon, then

A2=14na2cotπnA _ { 2 } = \frac { 1 } { 4 } n a ^ { 2 } \cdot \cot \frac { \pi } { n } = 14n4π2r2n2cotπn=πr2πncotπn\frac { 1 } { 4 } n \cdot \frac { 4 \pi ^ { 2 } r ^ { 2 } } { n ^ { 2 } } \cot \frac { \pi } { n } = \pi r ^ { 2 } \cdot \frac { \pi } { n } \cdot \cot \frac { \pi } { n }

\therefore A1:A2=πr2:πr2πncotπnA _ { 1 } : A _ { 2 } = \pi r ^ { 2 } : \pi r ^ { 2 } \cdot \frac { \pi } { n } \cdot \cot \frac { \pi } { n } = 1:πncotπn=tanπn:πn1 : \frac { \pi } { n } \cot \frac { \pi } { n } = \tan \frac { \pi } { n } : \frac { \pi } { n } .