Solveeit Logo

Question

Question: The area of the bounded region by the curve y = sinx, the x-axis and the line x = 0 and x =\(\pi\) i...

The area of the bounded region by the curve y = sinx, the x-axis and the line x = 0 and x =π\pi is

A

4

B

2

C

0

D

None of these

Answer

2

Explanation

Solution

Required area = 0πsinxdx\int _ { 0 } ^ { \pi } \sin x d x

= 20π/2sinxdx2 \int _ { 0 } ^ { \pi / 2 } \sin x d x = 2[cosx]0π/22 [ - \cos x ] _ { 0 } ^ { \pi / 2 } = 2 [ (cosπ/2)( - \cos \pi / 2 )(cos0)( - \cos 0 )]

= 2(1)

= 2 square unit.

Trick: For the curve y=sinxy = \sin x or cosx\cos x the area of 0π/2sinxdx=1,0πsinxdx=2\int _ { 0 } ^ { \pi / 2 } \sin x d x = 1 , \int _ { 0 } ^ { \pi } \sin x d x = 2 03π/2sinxdx=3,02πsinxdx=4\int _ { 0 } ^ { 3 \pi / 2 } \sin x d x = 3 , \int _ { 0 } ^ { 2 \pi } \sin x d x = 4 and so on.