Solveeit Logo

Question

Question: The area of smaller part between the circle \(x ^ { 2 } + y ^ { 2 } = 4\) and the line \(x = 1\) is...

The area of smaller part between the circle x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 and the line x=1x = 1 is

A

4π33\frac { 4 \pi } { 3 } - \sqrt { 3 }

B

8π33\frac { 8 \pi } { 3 } - \sqrt { 3 }

C

4π3+3\frac { 4 \pi } { 3 } + \sqrt { 3 }

D

5π3+3\frac { 5 \pi } { 3 } + \sqrt { 3 }

Answer

8π33\frac { 8 \pi } { 3 } - \sqrt { 3 }

Explanation

Solution

Area of smaller part

=2124x2dx= 2 \int _ { 1 } ^ { 2 } \sqrt { 4 - x ^ { 2 } } d x

=2[x24x2+2sin1x2]12= 2 \left[ \frac { x } { 2 } \sqrt { 4 - x ^ { 2 } } + 2 \sin ^ { - 1 } \frac { x } { 2 } \right] _ { 1 } ^ { 2 } =2[2π2[322π6]]= 2 \left[ 2 \cdot \frac { \pi } { 2 } - \left[ \frac { \sqrt { 3 } } { 2 } - 2 \cdot \frac { \pi } { 6 } \right] \right]

=2[π[32π3]]= 2 \left[ \pi - \left[ \frac { \sqrt { 3 } } { 2 } - \frac { \pi } { 3 } \right] \right] =8π33= \frac { 8 \pi } { 3 } - \sqrt { 3 }.