Solveeit Logo

Question

Question: The area of cross-section of a pipe is \[5.4{\text{ c}}{{\text{m}}^2}\] and water is pumped out of i...

The area of cross-section of a pipe is 5.4 cm25.4{\text{ c}}{{\text{m}}^2} and water is pumped out of it at the rate of 27 km/h27{\text{ km/h}}. Find in liters the volume of water that flows out of the pipe in one minute.

Explanation

Solution

Here we will be using the formula of calculating volume which equals the product of the area of the base to its height. The formula is shown below:
Volume=Area of base×height{\text{Volume}} = {\text{Area of base}} \times {\text{height}}

Complete step-by-step answer:
Step 1: As the area of the pipe given in the question is in the form of centimeters then first we will be converting the rate of water pumped out of the pipe or we can say the height of the pipe into centimeter per minute form from kilometer per hour as shown below:
27 km/h = 27×100000 cm/60 minutes27{\text{ km/h = 27}} \times {\text{100000 cm/60 minutes}}
(1 km=100000 cm1{\text{ km}} = 100000{\text{ cm}} and
1 hour=60 min.1{\text{ hour}} = 60{\text{ min}}{\text{.}})
By solving the above expression, we get:
27 km/h = 45000 cm/min\Rightarrow 27{\text{ km/h = 45000 cm/min}}
Step 2: Substituting the values of
Area of base = 5.4 cm2{\text{Area of base = 5}}{\text{.4 c}}{{\text{m}}^2} and
Height = 45000 cm{\text{Height = 45000 cm}} into the formula of volume
Volume=Area of base×height{\text{Volume}} = {\text{Area of base}} \times {\text{height}} we get:
Volume=5.4×45000\Rightarrow {\text{Volume}} = 5.4 \times 45000
By replacing the term,
5.4=54105.4 = \dfrac{{54}}{{10}} in the above expression we get:
Volume=5410×45000\Rightarrow {\text{Volume}} = \dfrac{{54}}{{10}} \times 45000
By dividing the RHS side of the above expression with 1010 we get:
Volume=54×4500\Rightarrow {\text{Volume}} = 54 \times 4500
After doing the multiplication in the RHS side of the above expression we get:
Volume=2430000 cm3\Rightarrow {\text{Volume}} = 2430000{\text{ c}}{{\text{m}}^3}
Step 3: By converting the volume from centimeter to liters, first we will convert it into meters as shown below:
Volume=24300 m3\Rightarrow {\text{Volume}} = 24300{\text{ }}{{\text{m}}^3}
(1 cm=100 m1{\text{ cm}} = 100{\text{ m}})
Now after converting the volume in liters from meter cube we get:
Volume=24300000 L\Rightarrow {\text{Volume}} = 24300000{\text{ L}}
(1 m3=1000 L1{\text{ }}{{\text{m}}^3} = 1000{\text{ L}})
So, we can say that water releasing per minute is 24300000 L/min.24300000{\text{ L/min}}{\text{.}}

\because The volume of the water is 24300000 L24300000{\text{ L}}.

Note:
Students need to remember the conversion units for solving these types of questions. Some of them are shown below:
1 m3=1000 L1{\text{ }}{{\text{m}}^3} = 1000{\text{ L}}
1 cm=100 m1{\text{ cm}} = 100{\text{ m}}
1 km=100000 cm1{\text{ km}} = 100000{\text{ cm}}
1 hour=60 min.1{\text{ hour}} = 60{\text{ min}}{\text{.}}