Question
Question: The area of cross-section, length, and density of a piece of metal of atomic weight \[60\] are \[{{1...
The area of cross-section, length, and density of a piece of metal of atomic weight 60 are 10−6m2 , 1m and 5×103kgm−3 respectively. If every atom contributes one free electron, find the drift velocity (in mms−1 ) of electrons in the metal when a current of 16A passes through it. Avogadro’s number is NA=6×1023/mol and charge on an electron is e=1.6×10−19C
Solution
We can make use of the relation between the current density and the drift velocity of the electron(s). Current density is the amount of current travelling per unit cross-section area. Before proceeding, we’ll need to find the number of atoms per unit volume of the substance.
Formula Used:
n=Mm×VNA
J=AI
vd=enJ
Complete step by step answer:
As discussed in the hint, we’ll begin with finding the number of atoms in unit volume of the substance, which will be n=Mm×VNA where m is the mass of the metal, M is the atomic weight of the substance, NA is the Avogadro’s number and V is the volume of the metal
Substituting the values in the above equation, we get