Solveeit Logo

Question

Question: The area of an ellipse is \(8\pi\) sq. units and the distance between the focii 4\(\sqrt{3}\). Then ...

The area of an ellipse is 8π8\pi sq. units and the distance between the focii 43\sqrt{3}. Then eccentricity of the ellipse is

A

sin300

B

sin450

C

sin600

D

sin700

Answer

sin600

Explanation

Solution

Given πab =8π,

ab = 8, 2a = 43\sqrt{3}

ae = 23\sqrt{3}

a2e2 =12

a2 – b2 =12

a2 - 64a2=12\frac{64}{a^{2}} = 12 (let a2= t)

t2 – 12t – 64 =0

(t – 16)(t +4) =0

⇒ a2 = 16

⇒ a = 4

but ae = 232\sqrt{3}

∴ e = 32\frac{\sqrt{3}}{2} = sin 600.