Solveeit Logo

Question

Question: The area of a triangle whose vertices are \(A(1, - 1,2)\), \(B(2,1, - 1)\) and \(C(3, - 1,2)\) is...

The area of a triangle whose vertices are A(1,1,2)A(1, - 1,2), B(2,1,1)B(2,1, - 1) and C(3,1,2)C(3, - 1,2) is

A

13

B

13\sqrt{13}

C

6

D

6\sqrt{6}

Answer

13\sqrt{13}

Explanation

Solution

AB=(2i+jk)(ij+2k)=i+2j3k\overset{\rightarrow}{AB} = (2\mathbf{i} + \mathbf{j} - \mathbf{k}) - (\mathbf{i} - \mathbf{j} + 2\mathbf{k}) = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k}, AC=(3ij+2k)(ij+2k)=2i\overset{\rightarrow}{AC} = (3\mathbf{i} - \mathbf{j} + 2\mathbf{k}) - (\mathbf{i} - \mathbf{j} + 2\mathbf{k}) = 2\mathbf{i}Area of triangle

ABC= 12AB×AC\frac{1}{2}|\overset{\rightarrow}{AB} \times \overset{\rightarrow}{AC}|

= 12(i+2j3k)×2i\frac{1}{2}|(\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}) \times 2\mathbf{i}| = 124k6j=3j2k=13\frac{1}{2}| - 4\mathbf{k} - 6\mathbf{j}| = | - 3\mathbf{j} - 2\mathbf{k}| = \sqrt{13}