Solveeit Logo

Question

Question: The area of a triangle is computed using the formula \[{\text{S = }}\dfrac{1}{2}{\text{bc }}\sin {\t...

The area of a triangle is computed using the formula S = 12bc sinA{\text{S = }}\dfrac{1}{2}{\text{bc }}\sin {\text{A}}. If the relative errors made in measuring b, c and calculating S are 0.020.02, 0.010.01 and 0.130.13 respectively the approximate error in A when A = π6{\text{A = }}\dfrac{\pi }{6} is
A) 0.050.05 Radians
B) 0.010.01 Radians
C) 0.050.05 Degree
D) 0.010.01 Degree

Explanation

Solution

The formula to calculate the error is
ΔSS=Δbb+Δcc+ΔsinAsinA\dfrac{{\Delta {\text{S}}}}{{\text{S}}} = \dfrac{{\Delta {\text{b}}}}{{\text{b}}} + \dfrac{{\Delta {\text{c}}}}{{\text{c}}} + \dfrac{{\Delta \sin {\text{A}}}}{{\sin {\text{A}}}} , where ΔSS\dfrac{{\Delta {\text{S}}}}{{\text{S}}} is the relative error for calculating S, Δbb\dfrac{{\Delta {\text{b}}}}{{\text{b}}} is the relative in measuring b,Δcc\dfrac{{\Delta {\text{c}}}}{{\text{c}}} is the relative error in measuring c and ΔsinAsinA\dfrac{{\Delta \sin {\text{A}}}}{{\sin {\text{A}}}} is the relative error for sinA\sin {\text{A}}.
Apply this formula, and then use the given conditions to find the required value.

Complete step by step solution:
Given that the area of a triangle is computed using the formula S = 12bc sinA{\text{S = }}\dfrac{1}{2}{\text{bc }}\sin {\text{A}}.

It is given that the relative errors made in measuring b, c and calculating S are 0.020.02, 0.010.01 and 0.130.13 respectively.

We know that error formula for the given conditions is ΔSS=Δbb+Δcc+ΔsinAsinA\dfrac{{\Delta {\text{S}}}}{{\text{S}}} = \dfrac{{\Delta {\text{b}}}}{{\text{b}}} + \dfrac{{\Delta {\text{c}}}}{{\text{c}}} + \dfrac{{\Delta \sin {\text{A}}}}{{\sin {\text{A}}}}, where ΔSS\dfrac{{\Delta {\text{S}}}}{{\text{S}}} is the relative error for calculating S, Δbb\dfrac{{\Delta {\text{b}}}}{{\text{b}}} is the relative in measuring b,Δcc\dfrac{{\Delta {\text{c}}}}{{\text{c}}} is the relative error in measuring c and ΔsinAsinA\dfrac{{\Delta \sin {\text{A}}}}{{\sin {\text{A}}}} is the relative error for sinA\sin {\text{A}}.

We will now find the value of ΔSS\dfrac{{\Delta {\text{S}}}}{{\text{S}}}, where 0.130.13 is the relative error in calculating S.

ΔSS=0.13\dfrac{{\Delta {\text{S}}}}{{\text{S}}} = 0.13

We will now find the value of Δbb\dfrac{{\Delta {\text{b}}}}{{\text{b}}}, where 0.020.02 is the relative error in measuring b.

Δbb=0.02\dfrac{{\Delta {\text{b}}}}{{\text{b}}} = 0.02

We will now find the value of Δcc\dfrac{{\Delta {\text{c}}}}{{\text{c}}}, where 0.010.01 is the relative error in measuring c.

Δcc=0.01\dfrac{{\Delta {\text{c}}}}{{\text{c}}} = 0.01

Replacing π6\dfrac{\pi }{6} for A{\text{A}} in the expression sinA\sin {\text{A}}, we get
sinπ6=12\sin \dfrac{\pi }{6} = \dfrac{1}{2}

Substituting the above values in the above error formula, we get

0.13=0.02+0.01+ΔsinA12 0.13=0.03+ΔsinA12 0.13=0.03+2ΔsinA  \Rightarrow 0.13 = 0.02 + 0.01 + \dfrac{{\Delta \sin {\text{A}}}}{{\dfrac{1}{2}}} \\\ \Rightarrow 0.13 = 0.03 + \dfrac{{\Delta \sin {\text{A}}}}{{\dfrac{1}{2}}} \\\ \Rightarrow 0.13 = 0.03 + 2\Delta \sin {\text{A}} \\\

Subtracting the above equation by 0.030.03 on each of the sides, we get

0.130.03=0.03+ΔsinA0.03 0.10=2ΔsinA  \Rightarrow 0.13 - 0.03 = 0.03 + \Delta \sin {\text{A}} - 0.03 \\\ \Rightarrow 0.10 = 2\Delta \sin {\text{A}} \\\

Dividing the above equation by 2 on each of the sides, we get

2ΔsinA2=0.102 ΔsinA=0.05  \Rightarrow \dfrac{{2\Delta \sin {\text{A}}}}{2} = \dfrac{{0.10}}{2} \\\ \Rightarrow \Delta \sin {\text{A}} = 0.05 \\\

Therefore, the approximate error in A when A = π6{\text{A = }}\dfrac{\pi }{6} is 0.050.05.

Hence, option A is correct.

Note:
In solving these types of questions, you should be familiar with the formula of calculating the error and relative errors. We use the given values as derivatives to solve these types of questions because derivatives provide us a way of estimating the number of function changes when a small change occurs in any input value. Here, a student may go wrong while calculating the approximate error for ΔsinA\Delta \sin {\text{A}} by not taking it into the sum. Also, we are supposed to write the values properly to avoid any miscalculation.