Solveeit Logo

Question

Question: The area of a triangle inscribed in an ellipse bears a constant ratio to the area of the triangle fo...

The area of a triangle inscribed in an ellipse bears a constant ratio to the area of the triangle formed by joining points on the auxiliary circle corresponding to the vertices of the first triangle. This ratio is-

A

b/a

B

a2/b2

C

2a/b

D

None of these

Answer

b/a

Explanation

Solution

Let P(a cos q1, b sin q1), Q(a cos q2, b sin q2) and R(a cos q3, b sin q3) be the vertices of the triangle inscribed in the ellipse x2/a2 + y2/b2 = 1. The points on the auxiliary circle corresponding to these points are P¢(a cos q1, a sin q1), Q¢(a cos q2 , a sin q2) and R¢(a cos q3, a sin q3).

\ D1 = Area of DPQR

= 12acosθ1bsinθ11acosθ2bsinθ21acosθ3bsinθ31\frac{1}{2}\left| \begin{matrix} a\cos\theta_{1} & b\sin\theta_{1} & 1 \\ a\cos\theta_{2} & b\sin\theta_{2} & 1 \\ a\cos\theta_{3} & b\sin\theta_{3} & 1 \end{matrix} \right|

= ab2cosθ1sinθ11cosθ2sinθ21cosθ3sinθ31\frac{ab}{2}\left| \begin{matrix} \cos\theta_{1} & \sin\theta_{1} & 1 \\ \cos\theta_{2} & \sin\theta_{2} & 1 \\ \cos\theta_{3} & \sin\theta_{3} & 1 \end{matrix} \right|

and, D2 = Area of DP¢ Q¢ R¢

=12acosθ1bsinθ11acosθ2bsinθ21acosθ3bsinθ31\frac{1}{2}\left| \begin{matrix} a\cos\theta_{1} & b\sin\theta_{1} & 1 \\ a\cos\theta_{2} & b\sin\theta_{2} & 1 \\ a\cos\theta_{3} & b\sin\theta_{3} & 1 \end{matrix} \right|

= 12a2cosθ1sinθ11cosθ2sinθ21cosθ3sinθ31\frac{1}{2}a^{2}\left| \begin{matrix} \cos\theta_{1} & \sin\theta_{1} & 1 \\ \cos\theta_{2} & \sin\theta_{2} & 1 \\ \cos\theta_{3} & \sin\theta_{3} & 1 \end{matrix} \right|

Clearly, Δ1Δ2\frac{\Delta_{1}}{\Delta_{2}} = ba\frac{b}{a} = constant.