Solveeit Logo

Question

Question: The area of a loop of the curve \[r = a\sin 3\theta\] is: A. \[\dfrac{{\pi {a^2}}}{2}\] B. \[\df...

The area of a loop of the curve r=asin3θr = a\sin 3\theta is:
A. πa22\dfrac{{\pi {a^2}}}{2}
B. πa26\dfrac{{\pi {a^2}}}{6}
C. πa28\dfrac{{\pi {a^2}}}{8}
D. πa212\dfrac{{\pi {a^2}}}{{12}}

Explanation

Solution

In this problem, first we need to find the upper and lower limits of the first loop of the curve. Then, apply the formula for the area under the curve in polar coordinates to obtain the area of the first loop.

Complete step-by-step answer:
The diagram of the curve r=asin3θr = a\sin 3\theta is shown below.

From the above figure, it can be observed that the curver=asin3θr = a\sin 3\theta consists of three loops.
Substitute 0 for rr in the equation of the curve r=asin3θr = a\sin 3\theta to obtain the upper and lower limits of the loop.

0=asin3θ sin3θ=0 3θ=0orπ θ=0orπ3  \,\,\,\,\,\,0 = a\sin 3\theta \\\ \Rightarrow \sin 3\theta = 0 \\\ \Rightarrow 3\theta = 0\,\,{\text{or}}\,\,\pi \\\ \Rightarrow \theta = 0\,\,{\text{or}}\,\,\dfrac{\pi }{3} \\\

Here, 0 is the lower limits and π3\dfrac{\pi }{3} is the upper limit of the first loop.
Now, the area AA of the first loop is calculated as follows:

A=120π3r2dθ A=120π3a2sin23θdθ A=a220π3sin23θdθ A=a220π3(1cos6θ2)dθ(sin2θ=1cos2θ2)  \,\,\,\,\,\,A = \dfrac{1}{2}\int_0^{\dfrac{\pi }{3}} {{r^2}d\theta } \\\ \Rightarrow A = \dfrac{1}{2}\int_0^{\dfrac{\pi }{3}} {{a^2}{{\sin }^2}3\theta d\theta } \\\ \Rightarrow A = \dfrac{{{a^2}}}{2}\int_0^{\dfrac{\pi }{3}} {{{\sin }^2}3\theta d\theta } \\\ \Rightarrow A = \dfrac{{{a^2}}}{2}\int_0^{\dfrac{\pi }{3}} {\left( {\dfrac{{1 - \cos 6\theta }}{2}} \right)d\theta } \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{{\sin }^2}\theta = \dfrac{{1 - \cos 2\theta }}{2}} \right) \\\

Further, solve the above integral as shown below.

A=a240π3(1cos6θ)dθ A=a24[θsin6θ6]0π3 A=a24[π3sin2π6] A=a24[π30] A=πa212  \,\,\,\,\,\,\,A = \dfrac{{{a^2}}}{4}\int_0^{\dfrac{\pi }{3}} {\left( {1 - \cos 6\theta } \right)d\theta } \\\ \Rightarrow A = \dfrac{{{a^2}}}{4}\left[ {\theta - \dfrac{{\sin 6\theta }}{6}} \right]_0^{\dfrac{\pi }{3}} \\\ \Rightarrow A = \dfrac{{{a^2}}}{4}\left[ {\dfrac{\pi }{3} - \dfrac{{\sin 2\pi }}{6}} \right] \\\ \Rightarrow A = \dfrac{{{a^2}}}{4}\left[ {\dfrac{\pi }{3} - 0} \right] \\\ \Rightarrow A = \dfrac{{\pi {a^2}}}{{12}} \\\

Thus, the area of a loop of the curve r=asin3θr = a\sin 3\theta is πa212\dfrac{{\pi {a^2}}}{{12}}, hence, option (D) is correct answer.

Note: In this problem, there are three identical loops. The area of each loop is the same. While evaluating the integral, convert sin23θ{\sin ^2}3\theta into cos6θ\cos 6\theta using trigonometric identity.