Solveeit Logo

Question

Question: The area made by curve f(x) = [x] + \(\sqrt { \mathrm { x } - [ \mathrm { x } ] }\) and x axis whe...

The area made by curve f(x) = [x] + x[x]\sqrt { \mathrm { x } - [ \mathrm { x } ] } and x axis when 0 £ x £ n (n Î N) is equal to {where [x] is greatest integer function}

A

2n3+n(n+1)2\frac { 2 n } { 3 } + \frac { n ( n + 1 ) } { 2 }

B
C

2n3+n(n1)2\frac { 2 n } { 3 } + \frac { n ( n - 1 ) } { 2 }

D

n3+n(n1)2\frac { \mathrm { n } } { 3 } + \frac { \mathrm { n } ( \mathrm { n } - 1 ) } { 2 }

Answer

2n3+n(n1)2\frac { 2 n } { 3 } + \frac { n ( n - 1 ) } { 2 }

Explanation

Solution

Curve

Area 0 £ x < 1 01x\int _ { 0 } ^ { 1 } \sqrt { \mathrm { x } } dx

Area 1 £ x < 2 01x\int _ { 0 } ^ { 1 } \sqrt { \mathrm { x } } dx + 1 × 1 (Area of A1

A2 A3 A4) Area 2 £ x < 3 01x\int _ { 0 } ^ { 1 } \sqrt { \mathrm { x } } dx + 2 × 1

Area n – 1 £ x < n dx + (n – 1) × 1 So total

area = dx + [1 + 2 + 3 +...... ....+ (n – 1)] =