Solveeit Logo

Question

Mathematics Question on Area between Two Curves

The area in the first quadrant between x2+y2=π2x^2 + y^2 = \pi^2 and y=sinxy = \sin \, x is

A

π384\frac{\pi^3 - 8 }{4}

B

π34\frac{\pi^3}{4}

C

π3164\frac{\pi^3 - 16 }{4}

D

π382\frac{\pi^3 - 8 }{2}

Answer

π384\frac{\pi^3 - 8 }{4}

Explanation

Solution

x2+y2=π2x^2 + y^2 = \pi^2 is a circle of radius π\pi and centre at origin.

Required area
= Area of circle (1st quadrant ) - 0πsinxdx\int\limits^{\pi}_0 \, \sin \, x \, dx
=π.π24[cosx]0π= \frac{\pi.\pi^{2}}{4} - \left[-\cos x \right]^{\pi}_{0}
=π24+(cosπcos0)= \frac{\pi^{2}}{4}+ \left(\cos\pi - \cos0\right)
=π34+(11)=π342= \frac{\pi^{3}}{4} + \left(-1-1\right)= \frac{\pi^{3}}{4} - 2
=π384= \frac{\pi^{3} -8}{ 4}