Solveeit Logo

Question

Mathematics Question on complex numbers

The area (in square units) of the region S=zC:z12;(z+zˉ)+i(zzˉ)2,Im(z)0S = \\{ z \in \mathbb{C} : |z - 1| \leq 2; (z + \bar{z}) + i (z - \bar{z}) \leq 2, \, \operatorname{Im}(z) \geq 0 \\} is:

A

7π3\frac{7\pi}{3}

B

3π2\frac{3\pi}{2}

C

17π8\frac{17\pi}{8}

D

7π4\frac{7\pi}{4}

Answer

3π2\frac{3\pi}{2}

Explanation

Solution

Let z=x+iyz = x + iy, where x,yRx, y \in \mathbb{R}. Rewrite the given inequalities:

From z124|z - 1|^2 \leq 4:
z12=(x1)2+y24    (x1)2+y24.|z - 1|^2 = (x - 1)^2 + y^2 \leq 4 \implies (x - 1)^2 + y^2 \leq 4. This represents a circle with center (1,0)(1, 0) and radius 22.
Sol. Figure

  1. From z+z2z + \overline{z} \geq 2:
    z+z=2x    x1.z + \overline{z} = 2x \implies x \geq 1. This represents the half-plane to the right of the line x=1x = 1.
  2. From Im(z)0\operatorname{Im}(z) \geq 0:
    Im(z)=y    y0.\operatorname{Im}(z) = y \implies y \geq 0. This represents the upper half-plane.

Step 1: Identify the region of intersection.
The region of intersection is the upper semicircular region of the circle (x1)2+y24(x - 1)^2 + y^2 \leq 4 to the right of x=1x = 1.

Step 2: Compute the area.
The area of the semicircle is: Area of semicircle=12πr2=12π(22)=2π.\text{Area of semicircle} = \frac{1}{2} \pi r^2 = \frac{1}{2} \pi (2^2) = 2\pi. The area excluded by the sector to the left of x=1x = 1 (sector A) is: Area of sector A=πr24=14π(22)=π.\text{Area of sector A} = \frac{\pi r^2}{4} = \frac{1}{4} \pi (2^2) = \pi.

Step 3: Subtract the areas.
The required area is: Area=Area of semicircleArea of sector A=2ππ=3π2.\text{Area} = \text{Area of semicircle} - \text{Area of sector A} = 2\pi - \pi = \frac{3\pi}{2}.