Solveeit Logo

Question

Mathematics Question on Parabola

The area (in square units) of the region described by: (x,y):y22x,andy4x1\\{(x, y) : y^2 \leq 2x, \, \text{and} \, y \geq 4x - 1\\} is:

A

1132\frac{11}{32}

B

89\frac{8}{9}

C

1112\frac{11}{12}

D

932\frac{9}{32}

Answer

932\frac{9}{32}

Explanation

Solution

The given region is bounded by the parabola y2=2xy^2 = 2x and the line y=4x1y = 4x - 1.

Step 1: Find intersection points.
Substituting x=y+14x = \frac{y+1}{4} (from y=4x1y = 4x - 1) into y2=2xy^2 = 2x:
y2=2y+14    y2=y+12.y^2 = 2 \cdot \frac{y+1}{4} \implies y^2 = \frac{y+1}{2}. Simplify to: 2y2y1=0    (2y+1)(y1)=0.2y^2 - y - 1 = 0 \implies (2y + 1)(y - 1) = 0. Thus, y=12y = -\frac{1}{2} and y=1y = 1.

Step 2: Set up integral for the shaded area.
The shaded area is calculated as: Area=121(xrightxleft)dy,\text{Area} = \int_{-\frac{1}{2}}^1 (x_{\text{right}} - x_{\text{left}}) \, dy, where xright=y+14x_{\text{right}} = \frac{y+1}{4} (line) and xleft=y22x_{\text{left}} = \frac{y^2}{2} (parabola).

Step 3: Solve the integral.
Area=121(y+14y22)dy=121y+14dy121y22dy.\text{Area} = \int_{-\frac{1}{2}}^1 \left( \frac{y+1}{4} - \frac{y^2}{2} \right) dy = \int_{-\frac{1}{2}}^1 \frac{y+1}{4} \, dy - \int_{-\frac{1}{2}}^1 \frac{y^2}{2} \, dy. Simplify: Area=[y28+y4]121[y36]121.\text{Area} = \left[ \frac{y^2}{8} + \frac{y}{4} \right]_{-\frac{1}{2}}^1 - \left[ \frac{y^3}{6} \right]_{-\frac{1}{2}}^1. Compute each term:

  • For y28+y4\frac{y^2}{8} + \frac{y}{4}: (128+14)((12)28+124)=18+28132116.\left( \frac{1^2}{8} + \frac{1}{4} \right) - \left( \frac{\left(-\frac{1}{2}\right)^2}{8} + \frac{-\frac{1}{2}}{4} \right) = \frac{1}{8} + \frac{2}{8} - \frac{1}{32} - \frac{1}{16}.
  • For y36\frac{y^3}{6}: 136(12)36.\frac{1^3}{6} - \frac{\left(-\frac{1}{2}\right)^3}{6}.

Simplify to find the area: Area=932.\text{Area} = \frac{9}{32}.