Solveeit Logo

Question

Mathematics Question on Area between Two Curves

The area in square units bounded by the normal at (1,2)(1, 2) to the parabola y2=4x,xy^2 = 4x, x-axis and the curve is given by

A

103\frac{10}{3}

B

73\frac{7}{3}

C

43\frac{4}{3}

D

NoneoftheseNone\, of\, these

Answer

103\frac{10}{3}

Explanation

Solution

We have, y2=4xy^2 = 4x
Differentiating w.r.t. x'x', we get
2ydydx=4dydx=2y2y \frac{dy}{dx} =4 \Rightarrow \frac{dy}{dx} = \frac{2}{y}
(dydx)(1,2)=22=1\left(\frac{dy}{dx}\right)_{\left(1,2\right) } = \frac{2}{2} =1
Equation of normal to the curve at (1, 2) is
yy1=1(dydx)(xx1)y -y_{1} = \frac{1}{\left(-\frac{dy}{dx}\right)} \left(x -x_{1}\right)
(y2)=12(x1)\Rightarrow \left(y -2\right)=- \frac{1}{2}\left(x-1\right)
y2=x+1\Rightarrow y -2 =-x +1
x+y=3\Rightarrow x+y =3
The line x+y=3x + y = 3 meets the xx-axis at x=3x = 3
\therefore Required Area = 014xdx+13(3x)dx \int\limits_0^1 \sqrt{4x} \, dx + \int\limits_1^3 (3-x) dx
=2[x3232]01+[3xx22]13= 2\left[\frac{x^{3 2}}{3 2}\right]^{1}_{0} +\left[3x -\frac{x^{2}}{2}\right]^{3}_{1}
=43(1)+[9923+12]=\frac{4}{3}\left(1\right) +\left[9 -\frac{9}{2}-3 +\frac{1}{2}\right]
=43+(9252)=43+42=43+2=103= \frac{4}{3}+\left(\frac{9}{2}-\frac{5}{2}\right)=\frac{4}{3}+\frac{4}{2}=\frac{4}{3}+2=\frac{10}{3} s units