Solveeit Logo

Question

Mathematics Question on Curves

The area (in square units) bounded by the curve y = |x−2| between x = 0, y = 0, and x = 5 is:

A

8

B

6.5

C

13

D

3.5

Answer

6.5

Explanation

Solution

The curve y=x2y=|x-2| is split into two linear parts:

  • For x2:y=x2x \geq 2: y = x - 2
  • For x<2:y=2xx < 2: y = 2 - x

We calculate the area under the curve from x=0x = 0 to x=5x = 5, divided into two regions:

  1. From x=0x = 0 to x=2:(y=2x)x = 2: (y = 2 - x)
  2. From x=2x = 2 to x=5:(y=x2)x = 5: (y = x - 2)

Region 1: x[0,2]x \in [0, 2] The area under y=2xy = 2 - x is:

Area1=02(2x)dx.Area_1 = \int_0^2 (2 - x) dx.

Area1=[2xx22]02=(2(2)222)(2(0)022).Area_1 = \left[ 2x - \frac{x^2}{2} \right]_0^2 = \left( 2(2) - \frac{2^2}{2} \right) - \left( 2(0) - \frac{0^2}{2} \right).

Area1=(42)0=2.Area_1 = (4 - 2) - 0 = 2.

Region 2: x[2,5]x \in [2, 5] The area under y=x2y = x - 2 is:

Area2=25(x2)dx.Area_2 = \int_2^5 (x - 2) dx.

Area2=[x222x]25=(5222(5))(2222(2)).Area_2 = \left[ \frac{x^2}{2} - 2x \right]_2^5 = \left( \frac{5^2}{2} - 2(5) \right) - \left( \frac{2^2}{2} - 2(2) \right).

Area2=(25210)(424).Area_2 = \left( \frac{25}{2} - 10 \right) - \left( \frac{4}{2} - 4 \right).

Area2=(252202)(4282)=52+42=92.Area_2 = \left( \frac{25}{2} - \frac{20}{2} \right) - \left( \frac{4}{2} - \frac{8}{2} \right) = \frac{5}{2} + \frac{4}{2} = \frac{9}{2}.

Total Area:

TotalArea=Area1+Area2=2+92=42+92=132=6.5.Total Area = Area_1 + Area_2 = 2 + \frac{9}{2} = \frac{4}{2} + \frac{9}{2} = \frac{13}{2} = 6.5.

Thus, the area bounded by the curve is 6.5 square units.