Solveeit Logo

Question

Mathematics Question on Conic sections

The area (in sq units) of the quadrilateral formed by the tangents at the end points of the latusrectum recta to the ellipse x29+y25=1is\frac{x^2}{9} +\frac{y^2}{ 5}=1 is

A

274\frac{27}{4}

B

18

C

272 \frac{27}{2}

D

27

Answer

27

Explanation

Solution

Given equation of ellipse is
x29+y25=1\frac{x^2}{9} +\frac{y^2}{5} =1
a2=9,b2=5\therefore \, \, \, \, \, \, \, a^2 = 9 , b^2 = 5
a=3,b=5\Rightarrow a=3, b=\sqrt 5
NOw ,e=1+b2a2=159=23 e= \sqrt{ 1+ \frac{b^2}{a^2}} = \sqrt{1- \frac{5}{9}} = \frac{2}{3}
Foci =(±ae,0)=(±2,0)= (\pm ae , 0) = (\pm 2 , 0) and b2a=53\frac{b^2}{a} = \frac{5}{3}
\therefore Extremities of one of latusrectum are
(2,53)\bigg( 2, \frac{5}{3} \bigg) and (2,53)\bigg(2, \frac{-5}{3} \bigg)
\therefore Equation of tangent at (2,53)is\bigg(2 , \frac{5}{3} \bigg) is
x(2)9+y(5/3)5=1or2x+3y=9\frac{x(2)}{9} + \frac{y(5/3)}{5} = 1 or 2x+3y =9
Since, E (ii) intersects X and Y-axes at (92,0) \bigg(\frac{9}{2} , 0 \bigg)
and (0,3), respectively.
\therefore Area of quadrilateral = 4 x Area of APOQ
=4×(12×92×3)=27= 4 \times \bigg( \frac{1}{2} \times \frac{9}{2} \times 3 \bigg ) = 27 sq units