Solveeit Logo

Question

Mathematics Question on Straight lines

The area (in s units) of the triangle formed by the lines x23xy+y2=0x^{2}-3 x y+y^{2}=0 and x+y+1=0x+y+1=0, is

A

23\frac{2}{\sqrt{3}}

B

32\frac{\sqrt{3}}{2}

C

525 \sqrt{2}

D

125\frac{1}{2 \sqrt{5}}

Answer

125\frac{1}{2 \sqrt{5}}

Explanation

Solution

Given equations of line are x23xy+y2=0x^{2}-3 x y+y^{2}=0 and x+y+1=0x+y+1=0 Let, m1m_{1} and m2m_{2} be the slope of the line x23xy+y2=2x^{2}-3 x y+y^{2}=2 m1+m2= Coefficient of xy Coefficient of y2\therefore m_{1}+m_{2} =-\frac{\text { Coefficient of } x y}{\text { Coefficient of } y^{2}} =+31=3...(i)=+\frac{3}{1}=3\,\,\,...(i) and m1m2= Coefficient of x2 Coefficient of y2m_{1} m_{2} =\frac{\text { Coefficient of } x^{2}}{\text { Coefficient of } y^{2}} =11=1...(ii)=\frac{1}{1}=1\,\,\,...(ii) Now, m1m2=(m1+m2)24m1m2m_{1}-m_{2}=\sqrt{\left(m_{1}+m_{2}\right)^{2}-4 m_{1} m_{2}} =(3)24×1\Rightarrow =\sqrt{(3)^{2}-4 \times 1} =94=5=\sqrt{9-4}=\sqrt{5} m1m2=5...(iii)\Rightarrow m_{1}-m_{2} =\sqrt{5}\,\,\,...(iii) On solving Eqs. (i) and (iii), we get m1=3+52m_{1}=\frac{3+\sqrt{5}}{2} and m2=352m_{2}=\frac{3-\sqrt{5}}{2} \therefore Equation of lines will be y=3+52x...(iv)y=\frac{3+\sqrt{5}}{2} x \,\,\,...(iv) and y=352x...(v)y=\frac{3-\sqrt{5}}{2} x\,\,\,...(v) and third line is given x+y+1=0...(vi)x+y+1=0\,\,\,...(vi) \therefore The points of intersection of these lines are A(0,0),B(25+5,3+55+5),A(0,0), B\left(-\frac{2}{5+\sqrt{5}}, \frac{3+\sqrt{5}}{5+\sqrt{5}}\right), and C(255,3555)C\left(-\frac{2}{5-\sqrt{5}}, \frac{3-\sqrt{5}}{5-\sqrt{5}}\right) \therefore Area of triangle =12001 25+53+55+51 25535551=\frac{1}{2}\begin{vmatrix}0 & 0 & 1 \\\ -\frac{2}{5+\sqrt{5}} & \frac{3+\sqrt{5}}{5+\sqrt{5}} & 1 \\\ -\frac{2}{5-\sqrt{5}} & \frac{3-\sqrt{5}}{5-\sqrt{5}} & 1\end{vmatrix} =12[0+0+1(2(35)52(5)2+2(3+5)52(5)2]=\frac{1}{2}\left[0+0+1\left(\frac{-2(3-\sqrt{5})}{5^{2}-(\sqrt{5})^{2}}+\frac{2(3+\sqrt{5})}{5^{2}-(\sqrt{5})^{2}}\right]\right. =12[6+25+6+25255]=\frac{1}{2}\left[\frac{-6+2 \sqrt{5}+6+2 \sqrt{5}}{25-5}\right] =12[4520]=125 =\frac{1}{2}\left[\frac{4 \sqrt{5}}{20}\right]=\frac{1}{2 \sqrt{5}}