Solveeit Logo

Question

Mathematics Question on Parabola

The area (in s units) of the smaller of the two circles that touch the parabola, y2=4xy^2 = 4x at the point (1,2)(1, 2) and the x-axis is :

A

4π(22)4 \pi ( 2 - \sqrt{2})

B

8π(322)8\pi ( 3 - 2 \sqrt{2})

C

4π(3+2)4 \pi ( 3 + \sqrt{2})

D

8π(22)8 \pi ( 2 - \sqrt{2})

Answer

8π(322)8\pi ( 3 - 2 \sqrt{2})

Explanation

Solution

Equation of circle is (x1)2+(y2)2+λ(xy+1)=0\left(x-1\right)^{2} +\left(y-2\right)^{2} +\lambda\left(x-y+1\right)=0 x2+y2+x(λ2)+y(4λ)+(5+λ)=0 \Rightarrow x^{2} +y^{2} +x\left(\lambda-2\right)+y\left(-4-\lambda\right) +\left(5+\lambda\right) = 0 As cirlce touches x axis then g2c=0g^{2} -c=0 (λ2)24=(5+λ) \frac{\left(\lambda-2\right)^{2}}{4} = \left(5+\lambda\right) λ2+44λ=20+4λ\lambda^{2} + 4-4\lambda=20 +4\lambda λ28λ16=0\lambda^{2} -8\lambda-16 =0 λ=8±1282\lambda = \frac{8\pm \sqrt{128}}{2} λ=4±42\lambda = 4 \pm4\sqrt{2} Radius =(4λ)2 = \left|\frac{\left(-4-\lambda\right)}{2}\right| Put λ\lambda and get least radius.