Solveeit Logo

Question

Mathematics Question on applications of integrals

The area (in s units) of the quadrilateral formed by the tangents at the end points of the latera recta to the ellipse x29+y25=1\frac{x^{2}}{9}+\frac{y^{2}}{5}=1, is:

A

274\frac{27}{4}

B

18

C

272\frac{27}{2}

D

27

Answer

27

Explanation

Solution


x29+y25=1\frac{x^{2}}{9}+\frac{y^{2}}{5}=1
a=3a=3
b=5b=\sqrt{5}
e2=1b2a2e^{2}=1-\frac{b^{2}}{a^{2}}
=159=49=1-\frac{5}{9}=\frac{4}{9}
e=23e=\frac{2}{3}
now the quadrilateral formed will be a rhombu with area =2a2e=\frac{2 a^{2}}{e}
=2.92×3=\frac{2.9}{2} \times 3
=27=27